Patents by Inventor Jane C. Cheng

Jane C. Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9233887
    Abstract: In a process for producing mono-cycloalkyl-substituted aromatic compound, benzene and cyclic monoolefin are contacted with a catalyst under alkylation conditions to produce an effluent containing mono-cycloalkyl-substituted aromatic compound. The catalyst comprises a molecular sieve.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 12, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Teng Xu, Edward A. Lemon, James R. Lattner, Jane C. Cheng
  • Patent number: 9096484
    Abstract: The invention is directed to a bimetallic catalyst system adapted for the manufacture of xylenes, a process for making said catalyst system, and to the process of manufacture of xylenes using said catalyst system, providing, in embodiments, improved selectivity by at least one of higher ethylene saturation and low xylene loss, decreased susceptibility to poisoning from feedstream impurities, and ability to operate at less severe conditions.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 4, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: April D. Ross, Jane C. Cheng
  • Publication number: 20150197465
    Abstract: The invention is directed to a bimetallic catalyst system adapted for the manufacture of xylenes, a process for making said catalyst system, and to the process of manufacture of xylenes using said catalyst system, providing, in embodiments, improved selectivity by at least one of higher ethylene saturation and low xylene loss, decreased susceptibility to poisoning from feedstream impurities, and ability to operate at less severe conditions.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Inventors: April D. Ross, Jane C. Cheng
  • Patent number: 9018121
    Abstract: The invention is directed to a bimetallic catalyst system adapted for the manufacture of xylenes, a process for making said catalyst system, and to the process of manufacture of xylenes using said catalyst system, providing, in embodiments, improved selectivity by at least one of higher ethylene saturation and low xylene loss, decreased susceptibility to poisoning from feedstream impurities, and ability to operate at less severe conditions.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: April 28, 2015
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: April D. Ross, Jane C. Cheng
  • Publication number: 20150025283
    Abstract: The invention is directed to a multimetallic catalyst and its use in a reactor system in a C9+ aromatics conversion process in order to reduce the saturation of aromatic species, reduce the production of C6+ non-aromatics byproducts, and achieve higher benzene purity. The multimetallic catalyst exhibits improved selectivity towards aromatic hydrocarbons in comparison to a traditional Pt/ZSM-5 catalyst and comprises ZSM-5, a Group 6-10 metal, and an additional metal not in Group 6-10. The C9+ aromatics conversion reactor system comprises a top bed containing the multimetallic catalyst for dealkylation of ethyl and propyl side chains, a second bed containing a catalyst comprising a hydrogenation component for transalkylation, and an optional third bed containing a catalyst without a hydrogenation component to convert non-aromatic hydrocarbons to gas products.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 22, 2015
    Inventors: Jane C. Cheng, Christopher G. Oliveri
  • Publication number: 20140336422
    Abstract: In a process for producing mono-cycloalkyl-substituted aromatic compound, benzene and cyclic monoolefin are contacted with a catalyst under alkylation conditions to produce an effluent containing mono-cycloalkyl-substituted aromatic compound. The catalyst comprises a molecular sieve.
    Type: Application
    Filed: November 4, 2011
    Publication date: November 13, 2014
    Applicant: ExxonMobile Chemical Patents, Inc.
    Inventors: Jihad M. Dakka, Teng Xu, Edward A. Lemon, James R. Lattner, Jane C. Cheng
  • Publication number: 20140330058
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Patent number: 8633343
    Abstract: In a process for the transalkylation of polycyclohexylbenzenes, a feed containing at least one polycyclohexylbenzene is contacted with benzene under transalkylation conditions with a catalyst comprising a zeolite USY having a silica to alumina molar ratio in excess of 10 to convert at least part of said polycyclohexylbenzene to cyclohexylbenzene.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: January 21, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Jane C. Cheng, Terry E. Helton
  • Patent number: 8586496
    Abstract: A method is described for preparing a molecular sieve-containing catalyst for use in a catalytic process conducted in a stirred tank reactor. The method comprises providing a mixture comprising a molecular sieve crystal and forming the mixture into catalyst particles having an average cross-sectional dimension of between about 0.01 mm and about 3.0 mm. The mixture may include a binder and the catalyst particles are then calcined to remove water therefrom and, after calcination and prior to loading the catalyst particles into a reactor for conducting the catalytic process, the catalyst particles are coated with a paraffin inert to the conditions employed in the catalytic process.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Carolyn B. Duncan, Jon E. R. Stanat, Daria N. Lissy, Jane C. Cheng
  • Patent number: 8524964
    Abstract: This disclosure relates to a process for hydrocarbon conversion comprising contacting, under conversion conditions, a feedstock suitable for hydrocarbon conversion with a catalyst comprising an EMM-10 family molecular sieve.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Jane C. Cheng, Mohan Kalyanaraman, Michael C. Kerby, Terry E. Helton
  • Patent number: 8519194
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are fed to at least one reaction zone comprising a catalyst system which comprises a molecular sieve and at least one hydrogenation metal. The MCM-22 family molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom, and the hydrogenation metal is selected from the group consisting of palladium, ruthenium, nickel, zinc, tin, cobalt, and combinations of any two or more thereof. Hydroalkylation conditions of temperature and pressure are selected to produce a hydroalkylation conversion in a range of from about 15% to about 75% The benzene and hydrogen are then contacted in the at least one reaction zone under said selected hydroalkylation condition to produce an effluent containing cyclohexylbenzene.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 27, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jon E. Stanat
  • Publication number: 20130217936
    Abstract: The invention concerns a method of making a catalyst adapted for isomerization of xylenes.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 22, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, Doron Levin
  • Patent number: 8440864
    Abstract: In a process for producing sec-butylbenzene, a C4 olefinic hydrocarbon feedstock comprising isobutene and at least one n-butene is contacted with methanol and/or water in the presence of an acid catalyst to selectively oxygenate isobutene to produce an effluent stream rich in n-butene and containing less isobutene than the feedstock. The effluent stream is then contacted with benzene under alkylation conditions and in the presence of an alkylation catalyst to produce alkylation stream comprising sec-butylbenzene.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 14, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Jon E. R. Stanat, James R. Lattner, Jane C. Cheng
  • Patent number: 8436213
    Abstract: In a process for reducing the level of tert-butylbenzene in a mixed butylbenzene feed comprising tert-butylbenzene and sec-butylbenzene, the feed is contacted under dealkylation conditions with a catalyst system comprising a dealkylation catalyst whereby the tert-butylbenzene is selectively dealkylated to produce an effluent stream which comprises benzene and which has a lower concentration of tert-butylbenzene than said feed.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Jane C. Cheng, John S. Buchanan
  • Publication number: 20130068663
    Abstract: Process for the preparation of a catalyst suitable for use in a naphtha reforming process, the process including providing a Y zeolite with an initial SiO2:Al2O3 molar ratio of at least 150, introducing the Y zeolite to a binder to form an intermediate composition, extruding the intermediate composition, reducing the alpha acidity of the extruded composition to provide a low acid composition, and introducing a noble metal to the low acid composition. Processes and systems of converting naphtha to a higher-octane hydrocarbon supply using catalysts, as prepared herein, are also disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jean W. BEECKMAN, Stephen J. McCARTHY, Jane C. CHENG
  • Patent number: 8329956
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are contacted under hydroalkylation conditions with a catalyst system comprising a MCM-22 family molecular sieve and at least one hydrogenation metal. The conditions comprise a temperature of about 140° C. to about 175° C., a pressure of about 135 psig to about 175 psig (931 kPag to 1207 kPag), a hydrogen to benzene molar ratio of about 0.30 to about 0.65 and a weight hourly space velocity of benzene of about 0.26 to about 1.05 hr?1.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 11, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, Tan-Jen Chen, Prasenjeet Ghosh
  • Publication number: 20120271076
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Patent number: 8247627
    Abstract: In a process for producing phenol and/or cyclohexanone, benzene and hydrogen are contacted with a first catalyst in a hydroalkylation step to produce a first effluent stream comprising cyclohexylbenzene, cyclohexane, and unreacted benzene. At least part of the first effluent stream is supplied to a first separation system to divide the first effluent stream part into a cyclohexylbenzene-rich stream and a C6 product stream comprising unreacted benzene and cyclohexane.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 21, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, J. Scott Buchanan, Jane C. Cheng, Tan-Jen Chen, Lorenzo C. DeCaul, Terry E. Helton, Jon E. Stanat, Francisco M. Benitez
  • Publication number: 20120178969
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are contacted under hydroalkylation conditions with a catalyst system comprising a MCM-22 family molecular sieve and at least one hydrogenation metal. The conditions comprise a temperature of about 140° C. to about 175° C., a pressure of about 135 psig to about 175 psig (931 kPag to 1207 kPag), a hydrogen to benzene molar ratio of about 0.30 to about 0.65 and a weight hourly space velocity of benzene of about 0.26 to about 1.05 hr?1.
    Type: Application
    Filed: March 1, 2012
    Publication date: July 12, 2012
    Inventors: Jane C. CHENG, Tan-Jen CHEN, Prasenjeet GHOSH
  • Patent number: 8217213
    Abstract: This disclosure relates to a process for manufacturing a mono-cycloalkyl-substituted aromatic compound, said process comprising contacting a feedstock comprising an aromatic compound and hydrogen under hydroalkylation reaction conditions with a catalyst system comprising a molecular sieve and at least one metal with hydrogenation activity, wherein said molecular sieve has, in its as-synthesized form and in calcined form, an X-ray diffraction pattern including peaks having a d-spacing maximum in the range of 14.17 to 12.57 Angstroms, a d-spacing maximum in the range of 12.1 to 12.56 Angstroms.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Terry E. Helton, Jane C. Cheng, Michael J. Brennan