Patents by Inventor Jane C. Cheng

Jane C. Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090187047
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: July 23, 2009
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Publication number: 20090163753
    Abstract: This disclosure relates to a process for hydrocarbon conversion comprising contacting, under conversion conditions, a feedstock suitable for hydrocarbon conversion with a catalyst comprising an EMM-10 family molecular sieve.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Inventors: Wieslaw J. Roth, Jane C. Cheng, Mohan Kalyanaraman, Michael C. Kerby, Terry E. Helton
  • Publication number: 20090112036
    Abstract: A process for oligomerizing isobutene includes contacting a feedstock including isobutene with a catalyst comprising an EMM-10 molecular sieve under conditions effective to oligomerize said isobutene and produce an effluent containing less isobutene than the feedstock.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Inventors: Jane C. Cheng, Ivy D. Johnson, Wieslaw J. Roth, Michael C. Kerby
  • Publication number: 20090093663
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Patent number: 7425662
    Abstract: A selectivated molecular sieve, e.g., ZSM-22 or ZSM-23, is used as olefin oligomerization catalyst to provide product, e.g., octenes and dodecenes from butene, having a low degree of branching and hindered double bonds.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jon E. Stanat, Georges M. K. Mathys, David Wayne Turner, Jane C. Cheng, Stephen W. Beadle, Cesar M. Cheng Guajardo, Roger Eijkhoudt, Allen D. Godwin, Ernest E. Green, Charles M. Yarbrough, Raphael Frans Caers, Carolyn B. Duncan, Ramzi Y. Saleh
  • Publication number: 20080167508
    Abstract: Disclosed herein is a process and catalyst for producing a monoalkylated aromatic compound from a polyalkylated aromatic compound, comprising the step of contacting an alkylatable aromatic compound with a polyalkylated aromatic compound under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.001 wt. % to 10.0 wt. % of said catalyst, to provide a product which comprises a monoalkylated aromatic compound.
    Type: Application
    Filed: February 27, 2006
    Publication date: July 10, 2008
    Inventors: Michael C. Clark, Jane C. Cheng, Ajit B. Dandekar
  • Patent number: 7361798
    Abstract: The invention relates to a process for producing a desired dialkylbenzene isomer having a formula R2C6H4, where R is an alkyl substituent, by contacting a polyalkylbenzene compound of formula RnC6H6-n, where n is an integer between 2 and 4, with a monoalkylbenzene compound of formula RC6H5 in the presence of a molecular sieve catalyst under reaction conditions sufficient to produce said dialkybenzene isomer. The preferred molecular sieve catalysts have pores or surface cavities greater than 5.6 Angstroms in diameter and/or an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07, and 3.42±0.07 Angstrom.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: April 22, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Ronald J. Cimini, Jane C. Cheng, David L. Stern, John Scott Buchanan
  • Patent number: 6777583
    Abstract: There is provided a substantially binder-free catalytic molecular sieve which has been modified by being ex situ selectivated with a silicon compound. The ex situ selectivation involves exposing the molecular sieve to at least two silicon impregnation sequences, each sequence comprising an impregnation with a silicon compound followed by calcination. The catalyst may be used in a hydrocarbon conversion process, such as toluene disproportionation.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: August 17, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventors: Jeffrey S. Beck, Jane C. Cheng, Sharon B. McCullen, David H. Olson, David L. Stern
  • Patent number: 6765120
    Abstract: In a process for the selective production of meta-diisopropylbenzene, a C9+ aromatic hydrocarbon feedstock containing meta- and ortho-diisopropylbenzene is contacted with benzene under conversion conditions with a catalyst comprising a molecular sieve selected from the group consisting of zeolite beta, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including the d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The contacting step selectively converts ortho-diisopropylbenzene in the feedstock to produce an effluent in which the ratio of meta-diispropylbenzene to ortho-diispropylbenzene is greater than that of the feedstock. The effluent is the fed to a separation zone for recovery of a product rich in meta-diisopropylbenzene.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 20, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William A. Weber, Charles Morris Smith, Francis S. Bryan, Stephen H. Brown, Jane C. Cheng
  • Patent number: 6730625
    Abstract: There is described a process and a catalyst for the hydroalkylation of an aromatic hydrocarbon, particularly benzene, wherein the catalyst comprises a first metal having hydrogenation activity and a crystalline inorganic oxide material having a X-ray diffraction pattern including the following d-spacing maxima 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: May 4, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventors: Clarence D. Chang, Jane C. Cheng, Terry E. Helton, Michael A. Steckel, Scott A. Stevenson
  • Publication number: 20030125591
    Abstract: In a process for the selective production of meta-diisopropylbenzene, a C9+ aromatic hydrocarbon feedstock containing meta- and ortho-diisopropylbenzene is contacted with benzene under conversion conditions with a catalyst comprising a molecular sieve selected from the group consisting of zeolite beta, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including the d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The contacting step selectively converts ortho-diisopropylbenzene in the feedstock to produce an effluent in which the ratio of meta-diispropylbenzene to ortho-diispropylbenzene is greater than that of the feedstock. The effluent is the fed to a separation zone for recovery of a product rich in meta-diisopropylbenzene.
    Type: Application
    Filed: December 13, 2002
    Publication date: July 3, 2003
    Inventors: William A. Weber, Charles Morris Smith, Francis S. Bryan, Stephen H. Brown, Jane C. Cheng
  • Patent number: 6576582
    Abstract: There is provided a substantially binder-free catalytic molecular sieve which has been modified by being ex situ selectivated with a silicon compound. The ex situ selectivation involves exposing the molecular sieve to at least two silicon impregnation sequences, each sequence comprising an impregnation with a silicon compound followed by calcination. The catalyst may be used in a hydrocarbon conversion process, such as toluene disproportionation.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: June 10, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: Jeffrey S. Beck, Jane C. Cheng, Sharon B. McCullen, David H. Olson, David L. Stern
  • Publication number: 20030055305
    Abstract: There is provided a substantially binder-free catalytic molecular sieve which has been modified by being ex situ selectivated with a silicon compound. The ex situ selectivation involves exposing the molecular sieve to at least two silicon impregnation sequences, each sequence comprising an impregnation with a silicon compound followed by calcination. The catalyst may be used in a hydrocarbon conversion process, such as toluene disproportionation.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 20, 2003
    Inventors: Jeffrey S. Beck, Jane C. Cheng, Sharon B. McCullen, David H. Olson, David L. Stern
  • Patent number: 6518471
    Abstract: In a process for the selective production of meta-diisopropylbenzene, a C9+aromatic hydrocarbon feedstock containing meta- and ortho-diisopropylbenzene is contacted with benzene under conversion conditions with a catalyst comprising a molecular sieve selected from the group consisting of zeolite beta, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including the d-spacing maxima at 12.4±0.25, 6.90±15, 3.57±0.07 and 3.42±0.07 Angstrom. The contacting step selectively converts ortho-diisopropylbenzene in the feedstock to produce an effluent in which the ratio of meta-diispropylbenzene to ortho-diispropylbenzene is greater than that of the feedstock. The effluent is the fed to a separation zone for recovery of a product rich in meta-diisopropylbenzene.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: February 11, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William A. Weber, Charles Morris Smith, Francis S. Bryan, Stephen H. Brown, Jane C. Cheng
  • Publication number: 20030018227
    Abstract: In a process for the selective production of meta-diisopropylbenzene, a C9+ aromatic hydrocarbon feedstock containing meta- and ortho-diisopropylbenzene is contacted with benzene under conversion conditions with a catalyst comprising a molecular sieve selected from the group consisting of zeolite beta, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including the d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The contacting step selectively converts ortho-diisopropylbenzene in the feedstock to produce an effluent in which the ratio of meta-diisopropylbenzene to ortho-diisopropylbenzene is greater than that of the feedstock. The effluent is the fed to a separation zone for recovery of a product rich in meta-diisopropylbenzene.
    Type: Application
    Filed: June 25, 2001
    Publication date: January 23, 2003
    Inventors: William A. Weber, Charles Morris Smith, Francis S. Bryan, Stephen H. Brown, Jane C. Cheng
  • Patent number: 6489529
    Abstract: There is described a process for the transalkylation of a polycycloalkyl aromatic compound, particularly the transalkylation of dicyclohexylbenzene to produce monocyclohexylbenzene. The process comprises contacting the polycycloalkyl aromatic compound with benzene in the presence of a catalyst selected from the group consisting of an acidic solid comprising a Group IVB metal oxide modified with an oxyanion of a Group VIBA metal oxide, TEA-mordenite, zeolite beta and a porous crystalline material having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. Preferably the catalyst is a WOx/ZrO2 material.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Jane C. Cheng, Jose G. Santiesteban, Michael A. Steckel, James C. Vartuli
  • Patent number: 6051521
    Abstract: This invention provides a method of producing an aromatics alkylation catalyst comprising the steps of:(a) synthesizing a layered oxide material MCM-56 in the presence of alkali and/or alkaline earth metal cations;(b) prior to any calcination of the MCM-56, subjecting the MCM-56 produced in step (a) to ammonium ion exchange so as to at least partially replace the alkaline or alkaline earth metal cations associated with the MCM-56 with ammonium ions; then(c) heating the ammonium-exchanged MCM-56 to decompose the ammonium cations and convert the MCM-56 into the hydrogen form; and(d) after step (b), forming the MCM-56 into catalyst particles.The resultant catalyst exhibits enhanced activity in the alkylation of benzene with ethylene and propylene.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: April 18, 2000
    Assignee: Mobil Oil Corporation
    Inventors: Jane C. Cheng, Hye Kyung C. Timken
  • Patent number: 6049018
    Abstract: This invention relates to a new synthetic porous crystalline material, designated MCM-68, a method and novel polycyclic organic cation for its preparation and its use in catalytic conversion of organic compounds. The new crystalline material exhibits a distinctive X-ray diffraction pattern and has a unique crystal structure which contains at least one channel system, in which each channel is defined by a 12-membered ring of tetrahedrally coordinated atoms, and at least two further, independent channel systems, in each of which each channel is defined by a 10-membered ring of tetrahedrally coordinated atoms, wherein the number of unique 10-membered ring channels is twice the number of 12-membered ring channels.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: April 11, 2000
    Assignee: Mobil Corporation
    Inventors: David C. Calabro, Jane C. Cheng, Robert A. Crane, Jr., Charles T. Kresge, Sandeep S. Dhingra, Michael A. Steckel, David L. Stern, Simon C. Weston
  • Patent number: 6037513
    Abstract: There is described a process and a catalyst for the hydroalkylation of an aromatic hydrocarbon, particularly benzene, wherein the catalyst comprises a first metal having hydrogenation activity and a crystalline inorganic oxide material having a X-ray diffraction pattern including the following d-spacing maxima 12.4.+-.0.25, 6.9.+-.0.15, 3.57.+-.0.07 and 3.42.+-.0.07.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: March 14, 2000
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Jane C. Cheng, Terry E. Helton, Michael A. Steckel, Scott A. Stevenson
  • Patent number: 5865986
    Abstract: This is a process for upgrading a petroleum naphtha fraction. The naphtha is subjected to reforming and the reformate is cascaded to a benzene and toluene synthesis zone over a benzene and toluene synthesis catalyst comprising a molecular sieve of low acid activity. The preferred molecular sieve is steamed ZSM-5. The benzene and toluene synthesis zone is operated under conditions compatible with the conditions of the reformer such as pressures of above about 50 psig (446 kPa) and temperatures above about 800.degree. F. (427.degree. C). In one aspect of the invention, the benzene and toluene synthesis catalyst includes a metal hydrogenation component such as cobalt, nickel, platinum or palladium. In one mode of operation, the benzene and toluene synthesis catalyst replaces at least a portion of the catalyst of the reformer. The process produces a product containing an increased proportion of benzene and toluene, and a reduced proportion of C8 aromatics, particularly ethylbenzenes, as compared to the reformate.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: February 2, 1999
    Assignee: Mobil Oil Corporation
    Inventors: John Scott Buchanan, Jane C. Cheng, David G. Freyman, Werner Otto Haag, Mohsen N. Harandi, Dominick N. Mazzone, Roger A. Morrison, Norman J. Rouleau, Charles M. Sorensen, Hye Kyung C. Timken, Robert Adams Ware