Patents by Inventor Jane Marie Lipkin

Jane Marie Lipkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160008952
    Abstract: A computer-implemented method for forming a three-dimensional workpiece from a block of material using a fluid jet cutting device is implemented by a fabrication system. The method includes receiving an indication of the geometry of the workpiece and generating a three-dimensional tool path to control a cutting head to form the workpiece. Generating the tool path includes receiving an indication of a desired cutting surface on the workpiece, determining a length of the cutting surface, and designating a plurality of waypoints along an edge of the cutting surface. Generating the tool path also includes determining at least one geometric parameter of the cutting surface at each waypoint of the plurality of waypoints, and calculating a speed of the cutting head at each waypoint of the plurality of waypoints based on the determined geometric parameter such that the speed of the cutting head varies along the cutting surface length.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 14, 2016
    Inventors: Yuanfeng Luo, Erik Karl Jacobson, Jane Marie Lipkin, Jeremy Gordon McNamara, Donovan Orlando Buckley
  • Patent number: 8993923
    Abstract: A system for manufacturing an airfoil includes a laser beam and a first fluid column surrounding the laser beam to create a confined laser beam directed at the airfoil. A liquid flowing inside the airfoil disrupts the first fluid column inside the airfoil. A method for manufacturing an airfoil includes confining a laser beam inside a first fluid column to create a confined laser beam and directing the confined laser beam at a surface of the airfoil. The method further includes creating a hole through the surface of the airfoil with the confined laser beam, flowing a liquid inside the airfoil, and disrupting the first fluid column with the liquid flowing inside the airfoil.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Zhaoli Hu, Douglas Anthony Serieno, Sharon Trombly Swede, Jane Marie Lipkin
  • Patent number: 8857055
    Abstract: A process is provided for forming shaped air holes, such as for use in turbine blades. Aspects of the disclosure relate to forming shaped portions of air holes using a short pulse laser, forming a metered hole corresponding to each shaped portion, and separately finishing the shaped portion using a short-pulse laser. In other embodiments, the order of these operations may be varied, such as to form the shaped portions and to finish the shaped portions using the short-pulse laser prior to forming the corresponding metered holes.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Bin Wei, Jon Conrad Schaeffer, Ronald Scott Bunker, Wenwu Zhang, Kathleen Blanche Morey, Jane Marie Lipkin, Benjamin Paul Lacy, Wilbur Douglas Scheidt
  • Patent number: 8790789
    Abstract: Disclosed herein is an erosion and corrosion resistant coating comprising a metallic binder, a plurality of hard particles, and a plurality of sacrificial particles. Also disclosed is a method of improving erosion and corrosion resistance of a metal component comprising disposing on a surface of the metal component the foregoing erosion and corrosion resistant coating comprising, and a metal component comprising a metal component surface and the foregoing erosion and corrosion resistant coating comprising a first surface and a second surface opposite the first surface, wherein the first surface is disposed on the metal component surface.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Thodla Ramgopal, Krishnamurthy Anand, David Vincent Bucci, Nitin Jayaprakash, Jane Marie Lipkin, Tamara Jean Muth, Surinder Singh Pabla, Vinod Kumar Pareek, Guru Prasad Sundararajan
  • Publication number: 20140166473
    Abstract: A coating system and a method of applying the coating system on an article. The coating system includes a sacrificial coating on a surface of the article and an erosion-resistant coating on the sacrificial coating, wherein the erosion-resistant coating comprises a layer of a polymeric material. The sacrificial coating is more anodic than the surface or the erosion-resistant coating.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jane Marie Lipkin, Vinod Kumar Pareek
  • Publication number: 20140076868
    Abstract: A system for manufacturing an airfoil includes a laser beam and a first fluid column surrounding the laser beam to create a confined laser beam directed at the airfoil. A liquid flowing inside the airfoil disrupts the first fluid column inside the airfoil. A method for manufacturing an airfoil includes confining a laser beam inside a first fluid column to create a confined laser beam and directing the confined laser beam at a surface of the airfoil. The method further includes creating a hole through the surface of the airfoil with the confined laser beam, flowing a liquid inside the airfoil, and disrupting the first fluid column with the liquid flowing inside the airfoil.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zhaoli Hu, Douglas Anthony Serieno, Sharon Trombly Swede, Jane Marie Lipkin
  • Publication number: 20110185572
    Abstract: A process and system are provided for forming shaped air holes, such as for use in turbine blades. Aspects of the disclosure relate to forming shaped portions of air holes using a short pulse laser, forming a metered hole corresponding to each shaped portion, and separately finishing the shaped portion using a short-pulse laser. In other embodiments, the order of these operations may be varied, such as to form the shaped portions and to finish the shaped portions using the short-pulse laser prior to forming the corresponding metered holes.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: General Electric Company
    Inventors: Bin Wei, Jon Conrad Schaeffer, Ronald Scott Bunker, Wenwu Zhang, Kathleen Blanche Morey, Jane Marie Lipkin, Benjamin Paul Lacy, Wilbur Douglas Scheidt
  • Publication number: 20100226783
    Abstract: A sacrificial and erosion-resistant turbine compressor airfoil includes a turbine compressor airfoil having a modified airfoil surface. The airfoil surface has an airfoil coating that includes a sacrificial coating comprising a layer of Al, Cr, Zn, an Ni—Al alloy, an Al—Si alloy, an Al-based alloy, a Cr-based alloy or a Zn-based alloy, an Al polymer composite, or a combination thereof, or a layer of a conductive undercoat and an overcoat of an inorganic matrix binder having a plurality of ceramic particles and conductive particles embedded therein disposed on the undercoat. The airfoil coating also includes an sacrificial coating, wherein one of the sacrificial coating or the erosion-resistant coating is disposed on the airfoil surface and the other of the corrosion-resistant coating or the erosion-resistant coating is disposed on the respective one, and wherein the sacrificial coating is more anodic than the airfoil surface or the erosion-resistant coating.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 9, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jane Marie Lipkin, Krishnamurthy Anand, David Vincent Bucci, Yuk-Chiu Lau, Surinder Pabla, Vinod Kumar Pareek, Jon Conrad Schaeffer, Guruprasad Sundararajan
  • Publication number: 20090297720
    Abstract: Disclosed herein is an erosion and corrosion resistant coating comprising a metallic binder, a plurality of hard particles, and a plurality of sacrificial particles. Also disclosed is a method of improving erosion and corrosion resistance of a metal component comprising disposing on a surface of the metal component the foregoing erosion and corrosion resistant coating comprising, and a metal component comprising a metal component surface and the foregoing erosion and corrosion resistant coating comprising a first surface and a second surface opposite the first surface, wherein the first surface is disposed on the metal component surface.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thodla Ramgopal, Krishnamurthy Anand, David Vincent Bucci, Nitin Jayaprakash, Jane Marie Lipkin, Tamara Jean Muth, Surinder Singh Pabla, Vinod Kumar Pareek, Guru Prasad Sundararajan
  • Publication number: 20090176110
    Abstract: A coating system and process capable of providing erosion and corrosion-resistance to a component, particularly a steel compressor blade of an industrial gas turbine. The coating system includes a metallic sacrificial undercoat on a surface of the component substrate, and a ceramic topcoat deposited by thermal spray on the undercoat. The undercoat contains a metal or metal alloy that is more active in the galvanic series than iron, and electrically contacts the surface of the substrate. The ceramic topcoat consists essentially of a ceramic material chosen from the group consisting of mixtures of alumina and titania, mixtures of chromia and silica, mixtures of chromia and titania, mixtures of chromia, silica, and titania, and mixtures of zirconia, titania, and yttria.
    Type: Application
    Filed: January 8, 2008
    Publication date: July 9, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Surinder Singh Pabla, Jon Conrad Schaeffer, Vinod Kumar Pareek, David Vincent Bucci, Thomas Moors, Jane Marie Lipkin
  • Publication number: 20080023037
    Abstract: A method for removing debris from a turbine component includes routing a cleaning composition comprising fluosilicic acid through an internal passage of the turbine component, without contacting an external surface of the turbine component, to remove the debris.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Inventors: Lawrence Bernard Kool, Peter Paul Pirolla, Jane Marie Lipkin, Frederick W. Dantzler