Patents by Inventor Janneke Ravensbergen

Janneke Ravensbergen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240262736
    Abstract: A method of producing photonic crystal fibers (PCFs) is disclosed, the method includes: 1) obtaining an intermediate PCF having an initial outer fiber diameter of less than 1 mm; and 2) elongating the intermediate PCF so as to controllably reduce at least one dimension of the intermediate PCF.
    Type: Application
    Filed: May 24, 2022
    Publication date: August 8, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Janneke RAVENSBERGEN, Patrick Sebastian UEBEL, Johannes Jacobus Matheus BASELMANS
  • Publication number: 20240231115
    Abstract: Disclosed is a pupil shaping arrangement for obtaining a defined pupil intensity profile for a metrology illumination beam configured for use in a metrology application. The pupil shaping arrangement comprises an engineered diffuser (ED) having a defined far-field profile configured to impose said defined pupil intensity profile on said metrology illumination beam. The pupil shaping arrangement may further comprise a multimode fiber (MMF) and be configured to reduce spatial coherence of coherent radiation.
    Type: Application
    Filed: September 30, 2020
    Publication date: July 11, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Zili ZHOU, Janneke RAVENSBERGEN
  • Publication number: 20240134208
    Abstract: Disclosed is a pupil shaping arrangement for obtaining a defined pupil intensity profile for a metrology illumination beam configured for use in a metrology application. The pupil shaping arrangement comprises an engineered diffuser (ED) having a defined far-field profile configured to impose said defined pupil intensity profile on said metrology illumination beam. The pupil shaping arrangement may further comprise a multimode fiber (MMF) and be configured to reduce spatial coherence of coherent radiation.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 25, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Zili ZHOU, Janneke RAVENSBERGEN
  • Publication number: 20240118584
    Abstract: A broadband radiation source device configured for generating a broadband output radiation upon receiving pump radiation, the device including: a hollow-core photonic crystal fiber (HC-PCF) including at least one structurally varied portion having at least one structural parameter of the HC-PCF varied with respect to one or more main portions of the HC-PCF, wherein the at least one structurally varied portion includes at least a structurally varied portion located downstream of a position along the length of the HC-PCF where the pump radiation will be spectrally expanded by a modulation instability dominated nonlinear optical process, and wherein the at least one structurally varied portion is configured and located such that the broadband output radiation includes wavelengths in the ultraviolet region.
    Type: Application
    Filed: November 9, 2023
    Publication date: April 11, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Janneke RAVENSBERGEN, Patrick Sebastian Uebel, Willem Richard Pongers
  • Publication number: 20240004127
    Abstract: Optical components and methods of manufacture thereof. A first optical component has a hollow-core photonic crystal fiber includes internal capillaries for guiding radiation and an outer capillary sheathing the internal capillaries; and at least an output end section having a larger inner cross-sectional dimension over at least a portion of the output end section than an inner cross-sectional dimension of the outer capillary along a central portion of the hollow-core photonic crystal fiber prior to the output end section. A second optical component includes a hollow-core photonic crystal fiber and a sleeve arrangement.
    Type: Application
    Filed: August 15, 2023
    Publication date: January 4, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Patrick Sebastian UEBEL, Peter Maximilian Götz, Sebastian Thomas Bauerschmidt, Coen Hubertus Matheus Baltis, Janneke Ravensbergen
  • Patent number: 11846867
    Abstract: A broadband radiation source device configured for generating a broadband output radiation upon receiving pump radiation, the device including: a hollow-core photonic crystal fiber (HC-PCF) including at least one structurally varied portion having at least one structural parameter of the HC-PCF varied with respect to one or more main portions of the HC-PCF, wherein the at least one structurally varied portion includes at least a structurally varied portion located downstream of a position along the length of the HC-PCF where the pump radiation will be spectrally expanded by a modulation instability dominated nonlinear optical process, and wherein the at least one structurally varied portion is configured and located such that the broadband output radiation includes wavelengths in the ultraviolet region.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: December 19, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Janneke Ravensbergen, Patrick Sebastian Uebel, Willem Richard Pongers
  • Patent number: 11774671
    Abstract: Optical components and methods of manufacture thereof. A first optical component has a hollow-core photonic crystal fiber includes internal capillaries for guiding radiation and an outer capillary sheathing the internal capillaries; and at least an output end section having a larger inner cross-sectional dimension over at least a portion of the output end section than an inner cross-sectional dimension of the outer capillary along a central portion of the hollow-core photonic crystal fiber prior to the output end section. A second optical component includes a hollow-core photonic crystal fiber and a sleeve arrangement.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: October 3, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Patrick Sebastian Uebel, Peter Maximilian Götz, Sebastian Thomas Bauerschmidt, Coen Hubertus Matheus Baltis, Janneke Ravensbergen
  • Publication number: 20220187680
    Abstract: A broadband radiation source device configured for generating a broadband output radiation upon receiving pump radiation, the device including: a hollow-core photonic crystal fiber (HC-PCF) including at least one structurally varied portion having at least one structural parameter of the HC-PCF varied with respect to one or more main portions of the HC-PCF, wherein the at least one structurally varied portion includes at least a structurally varied portion located downstream of a position along the length of the HC-PCF where the pump radiation will be spectrally expanded by a modulation instability dominated nonlinear optical process, and wherein the at least one structurally varied portion is configured and located such that the broadband output radiation includes wavelengths in the ultraviolet region.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 16, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Janneke Ravensbergen, Patrick Sebastian Uebel, Willem Richard Pongers
  • Publication number: 20210124112
    Abstract: Optical components and methods of manufacture thereof. A first optical component has a hollow-core photonic crystal fiber includes internal capillaries for guiding radiation and an outer capillary sheathing the internal capillaries; and at least an output end section having a larger inner cross-sectional dimension over at least a portion of the output end section than an inner cross-sectional dimension of the outer capillary along a central portion of the hollow-core photonic crystal fiber prior to the output end section. A second optical component includes a hollow-core photonic crystal fiber and a sleeve arrangement.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 29, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Patrick Sebastian UEBEL, Peter Maximilian GÖTZ, Sebastian Thomas BAUERSCHMIDT, Coen Hubertus Matheus BALTIS, Janneke RAVENSBERGEN
  • Patent number: 10908514
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: February 2, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Janneke Ravensbergen, Duygu Akbulut, Nitesh Pandey, Jin Lian
  • Patent number: 10599047
    Abstract: A metrology apparatus is disclosed that measures a structure formed on a substrate to determine a parameter of interest. The apparatus comprises an optical system configured to focus radiation onto the structure and direct radiation after reflection from the structure onto a detector, wherein: the optical system is configured such that the detector detects a radiation intensity resulting from interference between radiation from at least two different points in a pupil plane field distribution, wherein the interference is such that a component of the detected radiation intensity containing information about the parameter of interest is enhanced relative to one or more other components of the detected radiation intensity.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: March 24, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Janneke Ravensbergen, Nitesh Pandey, Zili Zhou, Armand Eugene Albert Koolen, Sebastianus Adrianus Goorden, Bastiaan Onne Fagginger Auer, Simon Gijsbert Josephus Mathijssen
  • Publication number: 20200004165
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 2, 2020
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Janneke RAVENSBERGEN, Duygu AKBULUT, Nitesh PANDEY, Jin LIAN
  • Patent number: 10444640
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 15, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Janneke Ravensbergen, Duygu Akbulut, Nitesh Pandey, Jin Lian
  • Publication number: 20190113852
    Abstract: A metrology apparatus is disclosed that has an optical system to focus radiation onto a structure and directs redirected radiation from the structure to a detection system. The optical system applies a plurality of different offsets of an optical characteristic to radiation before and/or after redirected by the structure, such that a corresponding plurality of different offsets are provided to redirected radiation derived from a first point of a pupil plane field distribution relative to redirected radiation derived from a second point of the pupil plane field distribution. The detection system detects a corresponding plurality of radiation intensities resulting from interference between the redirected radiation derived from the first point of the pupil plane field distribution and the redirected radiation derived from the second point of the pupil plane field distribution. Each radiation intensity corresponds to a different one of the plurality of different offsets.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Janneke RAVENSBERGEN, Duygu AKBULUT, Nitesh PANDEY, Jin LIAN
  • Publication number: 20180348645
    Abstract: A metrology apparatus is disclosed that measures a structure formed on a substrate to determine a parameter of interest. The apparatus comprises an optical system configured to focus radiation onto the structure and direct radiation after reflection from the structure onto a detector, wherein: the optical system is configured such that the detector detects a radiation intensity resulting from interference between radiation from at least two different points in a pupil plane field distribution, wherein the interference is such that a component of the detected radiation intensity containing information about the parameter of interest is enhanced relative to one or more other components of the detected radiation intensity.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 6, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Janneke Ravensbergen, Nitesh Pandey, Zili Zhou, Armand Eugene Albert Koolen, Sebastianus Adrianus Goorden, Bastiaan Onne Fagginger Auer, Simon Gijsbert Josephus Mathijssen