Patents by Inventor Jared Farnsworth

Jared Farnsworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11919756
    Abstract: An aerial work vehicle includes a boom and a work platform coupled to a distal end of the boom. The work platform has a forward end in a direction of travel and an aft end opposite the forward end. The aerial work vehicle also includes a first control panel coupled to the forward end of the work platform and a second control panel coupled to the aft end of the work platform.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: March 5, 2024
    Assignee: XTREME MANUFACTURING, LLC
    Inventors: James Charles Masters, Andrew Jared Farnsworth
  • Patent number: 11724706
    Abstract: Methods and systems may provide for technology to predict a future increase in power demand on a fuel cell based on route data associated with a vehicle powered by the fuel cell and reduce an operating temperature of the fuel cell prior to the future increase in power demand. The technology may also provide supplemental power from a battery to the vehicle while the operating temperature of the fuel cell is being reduced.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: August 15, 2023
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Jared Farnsworth
  • Publication number: 20230178774
    Abstract: Systems and methods are provided for monitoring and controlling pump speeds to maintain a balanced pressure drop between each of the multiple fuel cell systems or circuits. In systems where a single radiator is used to maintain desired temperatures of multiple fuel cells, back flow can nevertheless be avoided. Control maps may be used to meet minimum pump speeds as a function of a flow splitting valve position and target flow rate (to prevent or avoid fluid back flow through a fuel cell stack). Control maps may also be used to determine a minimum pump speed as a function of three-way valve position (to prevent fluid back flow across a radiator path).
    Type: Application
    Filed: December 8, 2021
    Publication date: June 8, 2023
    Inventors: Luke A. Rippelmeyer, Yohei Okamoto, Daniel Charles Folick, Jared Farnsworth
  • Publication number: 20230170508
    Abstract: Systems and methods are provided for modularizing a system. Parallel power systems having electronically isolated high voltage systems facilitate modulization. A control system is provided that optimizes the distribution of a power demand and/or a torque request so as to keep the efficiency, durability, drivability and/or safety of the system within an optimum range. In some cases, the distribution of power is uneven, so as to extend the battery life, while in other cases, the power draw on battery systems are kept equal and constant so as to properly manage the state of charge of the parallel power systems. In still other cases, the chosen power distribution keeps the power demand and/or torque request between minimum and maximum levels/capacity, and the power distribution avoids on/off of an individual power system.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 1, 2023
    Inventors: CHRISTOPHER M. BULPITT, DANIEL CHARLES FOLICK, JARED FARNSWORTH, ANDREW SATA, ARLO C. EITZER, LAURA E. BOWER, DANIEL K. LIM, JONATHAN J. SANDER, LUKE A. RIPPELMEYER, SCOTT A. FRIEDMAN, TAKEHITO YOKOO
  • Publication number: 20230060085
    Abstract: A system for reducing overconsumption of power in a vehicle includes a power source including a battery having a state of charge (SOC), and a fuel cell stack that generates electricity. The system further includes an electronic control unit (ECU) coupled to the power source and designed to receive a power request corresponding to a requested amount of power from the power source. The ECU is further designed to determine a fuel cell power amount corresponding to an amount of the electricity generated by the fuel cell stack to achieve the requested amount of power. The ECU is further designed to determine an overconsumption event when a current power consumption corresponding to a total amount of power being drawn from the power source is greater than the power request. The ECU is further designed to increase the fuel cell power amount in response to determining the overconsumption event.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 23, 2023
    Inventors: Daniel Charles Folick, Christopher M. Bulpitt, Jared Farnsworth, Andrew Sata
  • Publication number: 20230055154
    Abstract: A system for reducing overdraw of power in a vehicle includes a power source having a battery and a fuel cell circuit. The system further includes an ECU that transmits a power limit signal to a vehicle controller, the power limit signal corresponding to an instantaneous maximum amount of power of the power source. The ECU also determines a battery allowed power corresponding to an amount of power available to be drawn from the battery to cause the SOC of the battery to remain above a lower SOC threshold. The ECU also determines a current battery power draw from the battery corresponding to an instantaneous amount of power being drawn from the battery. The ECU is designed to reduce the instantaneous maximum amount of power in the power limit signal when the current battery power draw is greater than the battery allowed power, reducing the current battery power draw.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 23, 2023
    Inventors: Daniel Charles Folick, Christopher M. Bulpitt, Jared Farnsworth, Andrew Sata
  • Patent number: 11482719
    Abstract: A system for providing oxygen to a fuel cell circuit includes a compressor and a fuel cell stack having a plurality of fuel cells. The system also includes a plurality of pipes and a pressure sensor designed to detect pressure at a first location. The system also includes a memory to store a model of the fuel cell circuit and an ECU. The ECU determines a control signal corresponding to desirable operation of the compressor and determines flow values of the gas through each component based on the detected pressure and the model of the fuel cell circuit. The ECU also determines pressure values of each component based on the determined flow values and the model of the fuel cell circuit. The ECU also controls operation of the compressor based on the control signal, at least one of the flow values, and at least one of the pressure values.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 25, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick, Shigeki Hasegawa, Naoki Tomi
  • Publication number: 20220306128
    Abstract: Methods and systems may provide for technology to predict a future increase in power demand on a fuel cell based on route data associated with a vehicle powered by the fuel cell and reduce an operating temperature of the fuel cell prior to the future increase in power demand. The technology may also provide supplemental power from a battery to the vehicle while the operating temperature of the fuel cell is being reduced.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 29, 2022
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc
    Inventor: Jared Farnsworth
  • Patent number: 11094950
    Abstract: A system includes a fuel cell stack that receives a fluid, an actuator to increase or decrease a fluid temperature of the fluid, a pipe to facilitate flow of the fluid, and a memory designed to store a model of the fuel cell circuit. The system also includes an ECU that calculates mass flow values of the fluid through the fuel cell stack or the pipe based on a previously-determined mass flow value and the model of the fuel cell circuit. The ECU also calculates a plurality of pressure values corresponding to the fuel cell stack or the pipe based on the plurality of mass flow values and the model, controls the actuator position of the actuator to increase or decrease the fluid temperature based on at least one of the plurality of mass flow values and at least one of the plurality of pressure values.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 17, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda
  • Publication number: 20210238020
    Abstract: An aerial work vehicle includes a boom and a work platform coupled to a distal end of the boom. The work platform has a forward end in a direction of travel and an aft end opposite the forward end. The aerial work vehicle also includes a first control panel coupled to the forward end of the work platform and a second control panel coupled to the aft end of the work platform.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 5, 2021
    Inventors: James Charles Masters, Andrew Jared Farnsworth
  • Publication number: 20210238021
    Abstract: An aerial work vehicle (AWV) includes a boom, and a work platform coupled to a distal end of the boom, where the work platform has a forward end in a direction of travel and an aft end opposite the forward end. The AWV also includes a first control device mechanically coupled to one of the forward end of the work platform or the aft end of the work platform and configured to control operation of at least the boom. In addition, the AWV includes an alternate, second, control device configured to control operation of at least the boom, which may be at least one of wireless and/or mechanically coupled to the work platform at a location different from a location of the first control device.
    Type: Application
    Filed: March 22, 2021
    Publication date: August 5, 2021
    Inventors: James Charles Masters, Andrew Jared Farnsworth, Jacob Wayne Adkins, Ryan Paul Sobotka
  • Publication number: 20210221663
    Abstract: A telehandler vehicle includes a self-propelled chassis including a frame supporting an operator cab. The operator cab includes a first boom control panel and a propulsion system configured to control a movement and a position of the frame. The telehandler vehicle also includes a boom pivotably coupled to the frame, a material handling implement coupled to a distal end of the boom, and a personnel platform coupled to the distal end of the boom. The personnel platform has a forward end in a direction of travel and an aft end opposite the forward end. The telehandler vehicle further includes a second boom control panel coupled to the forward end of the personnel platform.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Inventors: James Charles Masters, Andrew Jared Farnsworth
  • Patent number: 10985391
    Abstract: Methods, systems, and devices of a cooling system for controlling air or liquid flow. The fluid system includes one or more actuators that control the air or liquid flow. The fluid system includes multiple interconnecting pipes that transport the air or liquid flow. Each pipe may have a mass flow for the air or liquid flow. The fluid system includes an electronic control unit. The electronic control unit is configured to determine an initial mass flow of the air or liquid flow. The electronic control unit is configured to determine the mass flow for each pipe based on the initial mass flow. The electronic control unit is configured to predict a cooling capability of the air or liquid flow within each pipe and control the one or more actuators to regulate or control cooling of one or more components of the vehicle based on the predicted cooling capability.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: April 20, 2021
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick
  • Patent number: 10971748
    Abstract: A system for controlling airflow through a fuel cell circuit includes a fuel cell stack. The system also includes a valve having a valve position that affects a pressure of the gas and a valve area corresponding to a cross-sectional area of the valve through which the gas may flow. The system also includes a memory designed to store a map or function that correlates the valve area to the valve position. The system also includes an ECU to determine or receive a desired mass flow rate of the gas through the valve, and calculate a desired valve area to achieve the desired mass flow rate. The ECU is also designed to compare the desired valve area to the map or function to determine a desired valve position that provides the desired valve area, and to control the valve to have the desired valve position.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: April 6, 2021
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick, Shigeki Hasegawa, Naoki Tomi
  • Patent number: 10916788
    Abstract: Methods, systems, and devices of a control system for gas flow. The control system controls gas flow through a fuel cell stack of a vehicle. The control system includes two or more components including one or more actuators and a fuel cell. The control system includes an electronic control unit connected to the two or more components. The control system is configured to determine initial values and previous timestep values. The control system is configured to determine or estimate a total pressure of the gas flow in each of the two or more components based on the initial values and the previous timestep values. The control system is configured to control the one or more actuators based on the total pressure of the gas flow in each of the two or more components.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 9, 2021
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Shigeki Hasegawa, Daniel Folick, Jared Farnsworth, Motoyuki Kimata
  • Patent number: 10871519
    Abstract: Methods, systems, and device for real-time two-dimensional modeling of a fuel cell stack of a vehicle. The method includes obtaining a dataset having multiple data points. A data point of the multiple data points is associated with one set of conditions and a homotopic operating state. The method includes generating a first matrix that has multiple sets of conditions from the plurality of data points. The method includes generating a second matrix of multiple operating states from the multiple data points. Each operating state is associated with at least one of the multiple sets of conditions. The method includes generating an interpolation of homotopic operation states (IHOS) model based on the first matrix and the second matrix. The IHOS model has multiple reference rows of the sets of conditions associated with a homotopic operating state. The method includes rendering, on a display, the IHOS model.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 22, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Jared Farnsworth
  • Patent number: 10777831
    Abstract: A system for heating or cooling a fuel cell circuit of a vehicle includes a fuel cell stack, a temperature sensor to detect a fluid temperature of the fluid, a pump to pump the fluid through the fuel cell circuit, and an ECU. The ECU is designed to determine a temperature control signal based on the fluid temperature of the fluid. The ECU is also designed to calculate a desired mass flow rate of the fluid through the fuel cell stack based on the temperature control signal. The ECU is also designed to calculate a desired pump speed of the pump based on the desired mass flow rate of the fluid through the fuel cell stack. The ECU is also designed to control the pump to pump the fluid at the desired pump speed to increase or decrease the fluid temperature of the fluid.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 15, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Daniel Folick, Jared Farnsworth, Shigeki Hasegawa, Kentaro Fukuda
  • Publication number: 20200251760
    Abstract: Methods, systems, and devices of a control system for gas flow. The control system controls gas flow through a fuel cell stack of a vehicle. The control system includes two or more components including one or more actuators and a fuel cell. The control system includes an electronic control unit connected to the two or more components. The control system is configured to determine initial values and previous timestep values. The control system is configured to determine or estimate a total pressure of the gas flow in each of the two or more components based on the initial values and the previous timestep values. The control system is configured to control the one or more actuators based on the total pressure of the gas flow in each of the two or more components.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Inventors: Shigeki Hasegawa, Daniel Folick, Jared Farnsworth, Motoyuki Kimata
  • Patent number: 10720655
    Abstract: A system includes a fuel cell stack having a plurality of fuel cells and designed to receive a fluid and to heat the fluid. The system also includes an actuator to increase or decrease a fluid temperature of the fluid and an ECU. The ECU can determine a temperature control signal corresponding to a desired temperature of the fluid and perform a feedforward control of the actuator to increase or decrease the fluid temperature towards the desired temperature. The ECU can also determine a temperature difference between the fluid temperature and the desired temperature, and can determine a sensitivity that corresponds a change in a parameter value or the actuator position to a change in the fluid temperature. The ECU can also apply the sensitivity to the temperature difference to determine an error signal, and control the actuator based on the error signal.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 21, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick, Naoki Tomi, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10714767
    Abstract: Methods, systems, and device for controlling air flow within a vehicle for electrical generation. The air control system includes at least one of an air compressor, a back pressure valve or a bypass valve that controls air flow. The air control system includes one or more components. The air control system includes an electronic control unit. The electronic control unit is configured to obtain an air flow target and an air pressure ratio target and determine that the one or more components will operate outside a safe operating region. The electronic control unit is configured to determine a mediated air flow target and a mediated air pressure ratio target that causes the one or more components to operate within the safe operating region. The electronic control unit is configured to adjust the at least one of the air compressor, the back pressure valve or the bypass valve.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 14, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Jared Farnsworth