Patents by Inventor Jasbinder S. Sanghera
Jasbinder S. Sanghera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20120141079Abstract: The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform.Type: ApplicationFiled: December 6, 2010Publication date: June 7, 2012Applicant: The Government of the US, as represented by the Secretary of the NavyInventors: Daniel J. Gibson, Jasbinder S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal
-
Publication number: 20120141080Abstract: The present invention is generally directed to a method of making a hollow-core photonic band gap preform from a specialty glass by pressing a specialty glass through a die to form a tube wherein the outer transverse shape of the tube is a hexagon, triangle, quadrilateral, or other polygon; stretching the tube to form a micro-tube with approximately the same outer transverse shape as the tube; stacking a plurality of micro-tubes into a bundle minimizing voids between adjacent micro-tubes and forming a central longitudinal void wherein the plurality of micro-tubes within the bundle comprise an inner structured region of the preform and the central void of the bundle comprises a hollow core in the preform; and inserting the bundle into a jacket tube. Also disclosed are the hollow-core photonic band gap preform and fiber formed by this method.Type: ApplicationFiled: December 6, 2010Publication date: June 7, 2012Applicant: The Government of the US, as represented by the Secretary of the NavyInventors: Daniel J Gibson, Jasbinder S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal
-
Publication number: 20120128873Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.Type: ApplicationFiled: January 13, 2012Publication date: May 24, 2012Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Ishwar D. Aggarwal
-
Publication number: 20120119147Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.Type: ApplicationFiled: January 13, 2012Publication date: May 17, 2012Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Jesse A. Frantz, Leslie Brandon Shaw, Ishwar D. Aggarwal
-
Publication number: 20120119146Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.Type: ApplicationFiled: January 13, 2012Publication date: May 17, 2012Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Jesse A. Frantz, Leslie Brandon Shaw, Ishwar D. Aggarwal
-
Patent number: 8173084Abstract: A high purity nano-sized Yb3+ doped Y2O3 (Yb:Y2O3) ceramic powder with a narrow size distribution and without hard agglomerates is provided. Also provided is a process for manufacturing the same wherein water in the reaction bath is replaced by a non-water washing agent having little or no hydrogen bonding capability to inhibit the formation of hard agglomerates in the ceramic powder.Type: GrantFiled: November 18, 2009Date of Patent: May 8, 2012Assignee: The United States of America as represented by the Secretary of the NavyInventors: Woohong Kim, Jasbinder S. Sanghera, Guillermo R Villalobos, Shyam S Bayya, Ishwar D. Aggarwal
-
Patent number: 8158096Abstract: The present invention is generally directed to a bulk barium copper sulfur fluoride (BCSF) material made by combining Cu2S, BaS and BaF2, heating the ampoule between 400 and 550 ° C. for at least two hours, and then heating the ampoule at a temperature between 550 and 950 ° C. for at least two hours. The BCSF material may be doped with potassium, rubidium, or sodium. The present invention also provides for a BCSF transparent conductive thin film made by forming a sputter target by either hot pressing bulk BCSF or hot pressing Cu2S, BaS and BaF2 powders and sputtering a BCSF thin film from the target onto a substrate. The present invention is further directed to a p-type transparent conductive material comprising a thin film of BCSF on a substrate where the film has a conductivity of at least 1 S/cm. The substrate may be a plastic substrate, such as a polyethersulfone, polyethylene terephthalate, polyimide, or some other suitable plastic or polymeric substrate.Type: GrantFiled: October 14, 2008Date of Patent: April 17, 2012Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jesse A. Frantz, Jasbinder S Sanghera, Vinh Q Nguyen, Woohong Kim, Ishwar D Aggarwal
-
Patent number: 8144392Abstract: A waveguide amplifier, disposed on a substrate, composed of sputtered film of chalcogenide glass doped with Erbium is disclosed. The amplifier includes a substrate, a thick film of chalcogenide glass disposed on the substrate, a pumping device, and an optical combining device, wherein the waveguide is operable to amplify the optically combined signal. This type of amplifier has been shown to be compact and cost-effective, in addition to being transparent in the mid-IR range as a result of the low phonon energy of chalcogenide glass.Type: GrantFiled: February 12, 2007Date of Patent: March 27, 2012Assignee: The United States of America as represented by the Secretary of the NavyInventors: Jasbinder S Sanghera, Ishwar D Aggarwal, Jesse A. Frantz, Leslie Brandon Shaw
-
Patent number: 8105509Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and further provides a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. In a process for making a transparent polycrystalline ceramic in accordance with the present invention, ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.Type: GrantFiled: November 18, 2009Date of Patent: January 31, 2012Assignee: The United States of America as represented by the Secretary of the NavyInventors: Jasbinder S. Sanghera, Guillermo R Villalobos, Woohong Kim, Shyam S Bayya, Ishwar D. Aggarwal, Bryan Sadowski
-
Publication number: 20110281122Abstract: This invention pertains to a composite of AlON and a germanate glass, and to a process for bonding AlON to the glass. The composite includes AlON and glass bonded together and having transmission in the visible and mid-infrared wavelength region. The process includes the step of heating them together above the softening temperature of the glass, the composite having excellent, i.e., typically in excess of about 60%, transmission in the 0.4-5 wavelength region.Type: ApplicationFiled: March 14, 2011Publication date: November 17, 2011Inventors: Shyam S. Bayya, Jasbinder S. Sanghera, Guillermo Villalobos, Geoffrey Chin, Ishwar D. Aggarwal
-
Publication number: 20110174989Abstract: A method of preparing a fine powder of calcium lanthanoid sulfide is disclosed. The method includes spraying soluble calcium and lanthanoid salts into at least one precipitating solution to form a precipitate comprising insoluble calcium and lanthanoid salts, optionally, oxidizing the precipitate comprising insoluble calcium and lanthanoid salts, and sulfurizing the optionally oxidized precipitate to form a fine powder of calcium lanthanoid sulfide. An alternative method for forming the powder is by flame pyrolysis. The calcium lanthanoid sulfide powder produced by either method can have an impurity concentration of less than 100 ppm, a carbon concentration of less than 200 ppm, a BET surface area of at least 50 m2/g, and an average particle size of less than 100 nm.Type: ApplicationFiled: January 21, 2010Publication date: July 21, 2011Inventors: Shyam S. Bayya, Woohong Kim, Jasbinder S. Sanghera, Guillermo R. Villalobos, Ishwar D. Aggarwal
-
Patent number: 7982983Abstract: Beam steering apparatus is presented having a Risley double-prism pair with first and second double-prisms disposed along an optical path, where one or more of the prisms are made from a chalcogenide glass material.Type: GrantFiled: April 27, 2009Date of Patent: July 19, 2011Assignee: The United States of America as represented by the Secretary of the NavyInventors: Jasbinder S. Sanghera, Catalin M Florea, Ishwar D. Aggarwal
-
Patent number: 7978738Abstract: A wavelength converter comprising an arsenic sulfide (As—S) chalcogenide glass fiber coupled to an optical parametric oscillator (OPO) crystal and a laser system using an OPO crystal coupled to an As—S fiber are provided. The OPO receives pump laser radiation from a pump laser and emits laser radiation at a wavelength that is longer than the pump laser radiation. The laser radiation that is emitted from the OPO is input into the As—S fiber, which in turn converts the input wavelength from the OPO to a desired wavelength, for example, a wavelength beyond about 4.4 ?m. In an exemplary embodiment, the OPO comprises a periodically poled lithium niobate (PPLN) crystal. The As—S fiber can include any suitable type of optical fiber, such as a conventional core clad fiber, a photonic crystal fiber, or a microstructured fiber.Type: GrantFiled: June 3, 2010Date of Patent: July 12, 2011Assignee: The United States of America as represented by the Secretary of the NavyInventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal
-
Patent number: 7939805Abstract: A Fourier-Transform Infrared (FTIR) spectrometer for operation in the mid- and long-wave infrared region (about 2-15 micron wavelengths) is disclosed. The FTIR spectrometer is composed of IR-transmitting fiber and uses a broadband IR source. A fiber stretcher is provided to provide a path difference between a first path and a second path having a sample associated therewith. Stretching of the fiber provides a path difference sufficient to generate an interferogram that can subsequently be analyzed to obtain information about a sample. A method for use of the apparatus of the invention is also disclosed. The method involves stretching of an IR-transmitting fiber to create a path difference sufficient to generate an interferogram. Various aspects of these features enable the construction of compact, portable spectrometers.Type: GrantFiled: May 18, 2006Date of Patent: May 10, 2011Assignee: The United States of America as represented by the Secretary of the NavyInventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal
-
Publication number: 20110104491Abstract: A functionally doped polycrystalline ceramic laser medium and method of making thereof are provided. The medium includes a solid state polycrystalline Ytterbium doped Yttria or Scandia (Yb:Y2O3 or Yb:Sc2O3) laser medium with a discrete or continuous gradient doping profile and methods for manufacturing the same. The doping profile can be two- or three-dimensional and can vary depending upon the laser geometry, the pumping scheme, and the benefits to be desired from the laser medium's structure. The grading direction can be linear, axial, radial, or any combination thereof. The material can be made from a combination of doped and undoped solid shapes, loose powders, and green shapes, and can be diffusion bonded or densified to a desired final shape using techniques such as pressureless sintering, hot pressing, hot forging, spark plasma sintering, and hot isostatic pressing (HIPing), or their combinations.Type: ApplicationFiled: October 30, 2009Publication date: May 5, 2011Applicant: The Government of the United States of America as represented by the Secretary of the NavyInventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Ishwar D. Aggarwal
-
Publication number: 20110100548Abstract: A functionally doped polycrystalline ceramic laser medium and method of making thereof are provided. The medium includes a solid state polycrystalline Ytterbium doped Yttria or Scandia (Yb:Y2O3 or Yb:Sc2O3) laser medium with a discrete or continuous gradient doping profile and methods for manufacturing the same. The doping profile can be two- or three-dimensional and can vary depending upon the laser geometry, the pumping scheme, and the benefits to be desired from the laser medium's structure. The grading direction can be linear, axial, radial, or any combination thereof. The material can be made from a combination of doped and undoped solid shapes, loose powders, and green shapes, and can be diffusion bonded or densified to a desired final shape using techniques such as pressureless sintering, hot pressing, hot forging, spark plasma sintering, and hot isostatic pressing (HIPing), or their combinations.Type: ApplicationFiled: October 30, 2009Publication date: May 5, 2011Inventors: Leslie Brandon Shaw, Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Ishwar D. Aggarwal
-
Patent number: 7927705Abstract: This invention pertains to a composite of AlON and a germanate glass, and to a process for bonding AlON to the glass. The composite includes AlON and glass bonded together and having transmission in the visible and mid-infrared wavelength region. The process includes the step of heating them together above the softening temperature of the glass, the composite having excellent, i.e., typically in excess of about 60%, transmission in the 0.4-5 wavelength region.Type: GrantFiled: October 13, 2005Date of Patent: April 19, 2011Assignee: The United States of America as represented by the Secretary of the NavyInventors: Shyam S. Bayya, Jasbinder S. Sanghera, Guillermo Villalobos, Geoffrey Chin, Ishwar D. Aggarwal
-
Publication number: 20110067757Abstract: A method and apparatus for forming a thin film of a copper indium gallium selenide (CIGS)-type material are disclosed. The method includes providing first and second targets in a common sputtering chamber. The first target includes a source of CIGS material, such as an approximately stoichiometric polycrystalline CIGS material, and the second target includes a chalcogen, such as selenium, sulfur, tellurium, or a combination of these elements. The second target provides an excess of chalcogen in the chamber. This can compensate, at least in part, for the loss of chalcogen from the CIGS-source in the first target, resulting in a thin film with a controlled stoichiometry which provides effective light absorption when used in a solar cell.Type: ApplicationFiled: September 17, 2010Publication date: March 24, 2011Inventors: Jesse A. Frantz, Jasbinder S. Sanghera, Robel Y. Bekele, Vinh Q. Nguyen, Ishwar D. Aggarwal, Allan J. Bruce, Michael Cyrus, Sergey V. Frolov
-
Publication number: 20110067997Abstract: A method for forming a high purity, copper indium gallium selenide (CIGS) bulk material is disclosed. The method includes sealing precursor materials for forming the bulk material in a reaction vessel. The precursor materials include copper, at least one chalcogen selected from selenium, sulfur, and tellurium, and at least one element from group IIIA of the periodic table, which may be selected from gallium, indium, and aluminum. The sealed reaction vessel is heated to a temperature at which the precursor materials react to form the bulk material. The bulk material is cooled in the vessel to a temperature below the solidification temperature of the bulk material and opened to release the formed bulk material. A sputtering target formed by the method can have an oxygen content of 10 ppm by weight, or less.Type: ApplicationFiled: September 17, 2010Publication date: March 24, 2011Inventors: Vinh Q. Nguyen, Jesse A. Frantz, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Allan J. Bruce, Michael Cyrus, Sergey V. Frolov
-
Patent number: 7891215Abstract: A thermally stable chalcogenide glass, a process for making the same, and an optical fiber drawn therefrom are provided. A chalcogenide glass having the composition Ge(5?y)As(32?x)Se(59+x)Te(4+y) (0?y?1 and 0?x?2) is substantially free from crystallization when it is heated past the glass transition temperature Tg or drawn into optical fibers. A process for making the thermally stable chalcogenide glass includes purifying the components to remove oxides and scattering centers, batching the components in a preprocessed distillation ampoule, gettering oxygen impurities from the mixture, and heating the components to form a glass melt. An optical fiber formed from the chalcogenide glass is substantially free from crystallization and exhibits low signal loss in the near-infrared region, particularly at wavelengths of about 1.55 ?m.Type: GrantFiled: June 18, 2010Date of Patent: February 22, 2011Assignee: The United States of America as represented by the Secretary of the NavyInventors: Vinh Q Nguyen, Jasbinder S. Sanghera, Ishwar D. Aggarwal