Patents by Inventor Javier A. Delacruz

Javier A. Delacruz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220150184
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a plurality of network layers which may assist electrical communications either horizontally or vertically among components from different device layers. In one embodiment, a system on chip (SoC) includes a plurality of network layers, each network layer including one or more routers, and more than one device layers, each of the plurality of network layers respectively bonded to one of the device layers. In another embodiment, a method for forming a system on chip (SoC) includes forming a plurality of network layers in an interconnect, wherein each network layer is bonded to an active surface of a respective device layer in a plurality of device layer.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: Invensas Corporation
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220139849
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include an obstructive element bonded to the semiconductor element along a bond interface, the obstructive element including an obstructive material disposed over the active circuitry, the obstructive material configured to obstruct external access to the active circuitry. The bonded element can include an artifact structure indicative of a wafer-level bond in which the semiconductor element and the obstructive element formed part of respective wafers directly bonded prior to singulation.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 5, 2022
    Inventors: Javier A. DeLaCruz, Rajesh Katkar
  • Publication number: 20220139883
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a network on layer including one or more routers and an application specific integrated circuit (ASIC) layer bonded to the network layer, the ASIC layer including one or more components. In some instances, the network layer and the ASIC layer each include an active surface and a second surface opposite the active surface. The active surface of the ASIC layer and the second surface of the network may each include one or more contacts, and the network layer may be bonded to the ASIC layer via bonds formed between the one or more contacts on the second surface of the network layer and the one or more contacts on the active surface of the ASIC layer.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Applicant: Invensas Corporation
    Inventors: Javier A. DeLaCruz, Belgacem Haba
  • Patent number: 11296044
    Abstract: Structures and techniques provide bond enhancement in microelectronics by trapping contaminants and byproducts during bonding processes, and arresting cracks. Example bonding surfaces are provided with recesses, sinks, traps, or cavities to capture small particles and gaseous byproducts of bonding that would otherwise create detrimental voids between microscale surfaces being joined, and to arrest cracks. Such random voids would compromise bond integrity and electrical conductivity of interconnects being bonded. In example systems, a predesigned recess space or predesigned pattern of recesses placed in the bonding interface captures particles and gases, reducing the formation of random voids, thereby improving and protecting the bond as it forms. The recess space or pattern of recesses may be placed where particles collect on the bonding surface, through example methods of determining where mobilized particles move during bond wave propagation.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: April 5, 2022
    Assignee: INVENSAS BONDING TECHNOLOGIES, INC.
    Inventors: Guilian Gao, Javier A. Delacruz, Shaowu Huang, Liang Wang, Gaius Gillman Fountain, Jr., Rajesh Katkar, Cyprian Emeka Uzoh
  • Patent number: 11289333
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: March 29, 2022
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Patent number: 11270979
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a plurality of network layers which may assist electrical communications either horizontally or vertically among components from different device layers. In one embodiment, a system on chip (SoC) includes a plurality of network layers, each network layer including one or more routers, and more than one device layers, each of the plurality of network layers respectively bonded to one of the device layers. In another embodiment, a method for forming a system on chip (SoC) includes forming a plurality of network layers in an interconnect, wherein each network layer is bonded to an active surface of a respective device layer in a plurality of device layer.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: March 8, 2022
    Assignee: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20220068890
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by vertically stacking two or more integrated circuit (IC) dies to at least partially overlap. In this arrangement, several circuit blocks defined on each die (1) overlap with other circuit blocks defined on one or more other dies, and (2) electrically connect to these other circuit blocks through connections that cross one or more bonding layers that bond one or more pairs of dies. In some embodiments, the overlapping, connected circuit block pairs include pairs of computation blocks and pairs of computation and memory blocks. The connections that cross bonding layers to electrically connect circuit blocks on different dies are referred to below as z-axis wiring or connections. This is because these connections traverse completely or mostly in the z-axis of the 3D circuit, with the x-y axes of the 3D circuit defining the planar surface of the IC die substrate or interconnect layers.
    Type: Application
    Filed: September 14, 2021
    Publication date: March 3, 2022
    Inventors: Steven L. Teig, Ilyas Mohammed, Kenneth Duong, Javier DeLaCruz
  • Patent number: 11264357
    Abstract: Techniques and arrangements for performing exposure operations on a wafer utilizing both a stepper apparatus and an aligner apparatus. The exposure operations are performed with respect to large composite base dies, e.g., interposers, defined within the wafer, where the interposers will become a part of microelectronic devices by coupling with active dies or microchips. The composite base dies may be coupled to the active dies via “native interconnects” utilizing direct bonding techniques. The stepper apparatus may be used to perform exposure operations on active regions of the composite base dies to provide a fine pitch for the native interconnects, while the aligner apparatus may be used to perform exposure operations on inactive regions of the composite base dies to provide a coarse pitch for interfaces with passive regions of the composite base dies.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: March 1, 2022
    Assignee: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Patent number: 11264361
    Abstract: The technology relates to a system on chip (SoC). The SoC may include a network on layer including one or more routers and an application specific integrated circuit (ASIC) layer bonded to the network layer, the ASIC layer including one or more components. In some instances, the network layer and the ASIC layer each include an active surface and a second surface opposite the active surface. The active surface of the ASIC layer and the second surface of the network may each include one or more contacts, and the network layer may be bonded to the ASIC layer via bonds formed between the one or more contacts on the second surface of the network layer and the one or more contacts on the active surface of the ASIC layer.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 1, 2022
    Assignee: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Publication number: 20220043209
    Abstract: Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects are provided. An example optical interconnect joins first and second optical conduits. A first direct oxide bond at room temperature joins outer claddings of the two optical conduits and a second direct bond joins the inner light-transmitting cores of the two conduits at an annealing temperature. The two low-temperature bonds allow photonics to coexist in an integrated circuit or microelectronics package without conventional high-temperatures detrimental to microelectronics. Direct-bonded square, rectangular, polygonal, and noncircular optical interfaces provide better matching with rectangular waveguides and better performance. Direct oxide-bonding processes can be applied to create running waveguides, photonic wires, and optical routing in an integrated circuit package or in chip-to-chip optical communications without need for conventional optical couplers.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Shaowu HUANG, Javier A. DELACRUZ, Liang WANG, Guilian GAO
  • Publication number: 20220020741
    Abstract: A microelectronic circuit structure comprises a stack of bonded layers comprising a bottom layer and at least one upper layer. At least one of the upper layers comprises an oxide layer having a back surface and a front surface closer to the bottom layer than the back surface, and a plurality of FD-SOI transistors built on the from surface. At least a first back gate line and a second back gate line extend separate from each other above the back surface for independently providing a first back gate bias to a first group of transistors and a second back gate bias to a second different group of transistors.
    Type: Application
    Filed: August 24, 2021
    Publication date: January 20, 2022
    Inventors: Javier A. Delacruz, David Edward Fisch, Kenneth Duong, Xu Chang, Liang Wang
  • Publication number: 20220005827
    Abstract: Techniques for manufacturing memory devices, such as 3-dimensional NAND (3D-NAND) memory devices, may include splitting gate planes (e.g., the planes that include the word lines) into strips, thereby splitting the memory cells and increasing a density of memory cells for a respective memory device. The techniques described herein are applicable to various types of 3D-NAND or other memory devices.
    Type: Application
    Filed: June 29, 2021
    Publication date: January 6, 2022
    Inventors: Xu Chang, Belgacem Haba, Rajesh Katkar, David Edward Fisch, Javier A. Delacruz
  • Patent number: 11205625
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include an obstructive element bonded to the semiconductor element along a bond interface, the obstructive element including an obstructive material disposed over the active circuitry, the obstructive material configured to obstruct external access to the active circuitry. The bonded element can include an artifact structure indicative of a wafer-level bond in which the semiconductor element and the obstructive element formed part of respective wafers directly bonded prior to singulation.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: December 21, 2021
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Javier A. DeLaCruz, Rajesh Katkar
  • Publication number: 20210351159
    Abstract: Techniques and mechanisms for coupling chiplets to microchips utilizing active bridges. The active bridges include circuits that provide various functions and capabilities that previously may have been located on the microchips and/or the chiplets. Furthermore, the active bridges may be coupled to the microchips and the chiplets via “native interconnects” utilizing direct bonding techniques. Utilizing the active bridges and the direct bonding techniques of the active bridges to the microchips and the chiplets, the pitch for the interconnects can be greatly reduced going from a pitch in the millimeters to a fine pitch that may be in a range of less than one micron to approximately five microns.
    Type: Application
    Filed: May 7, 2020
    Publication date: November 11, 2021
    Inventors: Javier A. Delacruz, Belgacem Haba, Rajesh Katkar
  • Patent number: 11169326
    Abstract: Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects are provided. An example optical interconnect joins first and second optical conduits. A first direct oxide bond at room temperature joins outer claddings of the two optical conduits and a second direct bond joins the inner light-transmitting cores of the two conduits at an annealing temperature. The two low-temperature bonds allow photonics to coexist in an integrated circuit or microelectronics package without conventional high-temperatures detrimental to microelectronics. Direct-bonded square, rectangular, polygonal, and noncircular optical interfaces provide better matching with rectangular waveguides and better performance. Direct oxide-bonding processes can be applied to create running waveguides, photonic wires, and optical routing in an integrated circuit package or in chip-to-chip optical communications without need for conventional optical couplers.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: November 9, 2021
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Shaowu Huang, Javier A. Delacruz, Liang Wang, Guilian Gao
  • Patent number: 11157670
    Abstract: An integrated circuit and a method for designing an IC where the smallest repeatable block is selected, designed and tested to span across multiple die levels. The block is configured to be timing closed at the block level thereby reducing the overall complexity of the design and avoiding the limiting effects of the constrained EDA tools. The block may subsequently be repeated on multiple die to be stacked in an IC.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 26, 2021
    Assignee: Xcelsis Corporation
    Inventors: Javier A Delacruz, Eric Nequist, Jung Ko, Kenneth Duong
  • Publication number: 20210327851
    Abstract: Embedded organic interposers for high bandwidth are provided. Example embedded organic interposers provide thick conductors with more dielectric space, and more routing layers of such conductors than conventional interposers, in order to provide high bandwidth transmission capacity over longer spans. The embedded organic interposers provide high bandwidth transmission paths between components such as HBM, HBM2, and HBM3 memory stacks, and other components. To provide the thick conductors and more routing layers for greater transmission capacity, extra space is achieved by embedding the organic interposers in the core of the package. Example embedded organic interposers lower a resistive-capacitive (RC) load of the routing layers to provide an improved data transfer rate of 1 gigabits per second over at least a 6 mm span, for example. The embedded interposers are not limited to use with memory modules.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Javier A. Delacruz, Belgacem Haba
  • Patent number: 11152336
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by vertically stacking two or more integrated circuit (IC) dies to at least partially overlap. In this arrangement, several circuit blocks defined on each die (1) overlap with other circuit blocks defined on one or more other dies, and (2) electrically connect to these other circuit blocks through connections that cross one or more bonding layers that bond one or more pairs of dies. In some embodiments, the overlapping, connected circuit block pairs include pairs of computation blocks and pairs of computation and memory blocks. The connections that cross bonding layers to electrically connect circuit blocks on different dies are referred to below as z-axis wiring or connections. This is because these connections traverse completely or mostly in the z-axis of the 3D circuit, with the x-y axes of the 3D circuit defining the planar surface of the IC die substrate or interconnect layers.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: October 19, 2021
    Assignee: Xcelsis Corporation
    Inventors: Steven L. Teig, Ilyas Mohammed, Kenneth Duong, Javier DeLaCruz
  • Patent number: 11139283
    Abstract: A microelectronic package may include a substrate having first and second surfaces each extending in first and second directions, a NAND wafer having a memory storage array, a bitline driver chiplet configured to function as a bitline driver, and a wordline driver chiplet configured to function as a wordline driver. The NAND wafer may be coupled to the first surface of the substrate, and the bitline and wordline driver chiplets may each be mounted to a front surface of the NAND wafer. The NAND wafer may have element contacts electrically connected with conductive structure of the substrate. The bitline and wordline driver chiplets may be elongated along the first and second directions, respectively. Front surfaces of the bitline driver chiplet and the wordline driver chiplet may be arranged in a single common plane and may be entirely contained within an outer periphery of the front surface of the NAND wafer.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 5, 2021
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Stephen Morein
  • Patent number: 11127738
    Abstract: A microelectronic circuit structure comprises a stack of bonded layers comprising a bottom layer and at least one upper layer. At least one of the upper layers comprises an oxide layer having a back surface and a front surface closer to the bottom layer than the back surface, and a plurality of FD-SOI transistors built on the front surface. At least a first back gate line and a second back gate line extend separate from each other above the back surface for independently providing a first back gate bias to a first group of transistors and a second back gate bias to a second different group of transistors.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: September 21, 2021
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, David Edward Fisch, Kenneth Duong, Xu Chang, Liang Wang