Patents by Inventor Javier A. Delacruz

Javier A. Delacruz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200328164
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over at least a portion of the active circuitry. The obstructive material can be configured to obstruct external access to the active circuitry. The bonded structure can include a disruption structure configured to disrupt functionality of the at least a portion of the active circuitry upon debonding of the protective element from the semiconductor element.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Javier A. DeLaCruz, Belgacem Haba, Rajesh Katkar
  • Publication number: 20200328162
    Abstract: A bonded structure is disclosed. The bonded structure can include a semiconductor element comprising active circuitry and a first bonding layer. The bonded structure can include a protective element directly bonded to the semiconductor element without an adhesive along a bonding interface. The protective element can include an obstructive material disposed over the active circuitry and a second bonding layer on the obstructive material. The second bonding layer can be directly bonded to the first bonding layer without an adhesive. The obstructive material can be configured to obstruct external access to the active circuitry.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Belgacem Haba, Javier A. DeLaCruz, Rajesh Katkar, Arkalgud Sitaram
  • Publication number: 20200321275
    Abstract: Techniques are disclosed herein for creating over and under interconnects. Using techniques described herein, over and under interconnects are created on an IC. Instead of creating signaling interconnects and power/ground interconnects on a same side of a chip assembly, the signaling interconnects can be placed on an opposing side of the chip assembly as compared to the power interconnects.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Belgacem Haba, Stephen Morein, Ilyas Mohammed, Rajesh Katkar, Javier A. Delacruz
  • Patent number: 10790222
    Abstract: A microelectronic assembly including first and second laminated microelectronic elements is provided. A patterned bonding layer is disposed on a face of each of the first and second laminated microelectronic elements. The patterned bonding layers are mechanically and electrically bonded to form the microelectronic assembly.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: September 29, 2020
    Assignee: Invensas Corporation
    Inventors: Javier A. Delacruz, Belgacem Haba, Wael Zohni, Liang Wang, Akash Agrawal
  • Patent number: 10784191
    Abstract: A stacked and electrically interconnected structure is disclosed. The structure can comprise a first element and a second element directly bonded to the first element along a bonding interface without an intervening adhesive. A filter circuit can be integrally formed between the first and second elements along the bonding interface.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 22, 2020
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Shaowu Huang, Belgacem Haba, Javier A. DeLaCruz
  • Publication number: 20200294858
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed
  • Publication number: 20200293872
    Abstract: Some embodiments provide a three-dimensional (3D) circuit structure that has two or more vertically stacked bonded layers with a machine-trained network on at least one bonded layer. As described above, each bonded layer can be an IC die or an IC wafer in some embodiments with different embodiments encompassing different combinations of wafers and dies for the different bonded layers. The machine-trained network in some embodiments includes several stages of machine-trained processing nodes with routing fabric that supplies the outputs of earlier stage nodes to drive the inputs of later stage nodes. In some embodiments, the machine-trained network is a neural network and the processing nodes are neurons of the neural network. In some embodiments, one or more parameters associated with each processing node (e.g., each neuron) is defined through machine-trained processes that define the values of these parameters in order to allow the machine-trained network (e.g.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Steven L. Teig, Kenneth Duong, Javier DeLaCruz
  • Publication number: 20200294908
    Abstract: In various embodiments, a passive electronic component is disclosed. The passive electronic component can have a first surface and a second surface opposite the first surface. The passive electronic component can include a nonconductive material and a capacitor embedded within the nonconductive material. The capacitor can have a first electrode, a second electrode, and a dielectric material disposed between the first and second electrodes. The first electrode can comprise a first conductive layer and a plurality of conductive fibers extending from and electrically connected to the first conductive layer. A first conductive via can extend through the passive electronic component from the first surface to the second surface, with the first conductive via electrically connected to the first electrode.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 17, 2020
    Inventors: Belgacem Haba, Javier A. DeLaCruz
  • Publication number: 20200273798
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: March 2, 2020
    Publication date: August 27, 2020
    Inventors: Ilyas Mohammed, Steven L. Teig, Javier DeLaCruz
  • Patent number: 10748824
    Abstract: Representative implementations of devices and techniques provide a temporary access point (e.g., for testing, programming, etc.) for a targeted interconnect located among multiple finely spaced interconnects on a surface of a microelectronic component. One or more sacrificial layers are disposed on the surface of the microelectronic component, overlaying the multiple interconnects. An insulating layer is disposed between a conductive layer and the surface, and includes a conductive via through the insulating layer that electrically couples the conductive layer to the target interconnect. The sacrificial layers are configured to be removed after the target interconnect has been accessed, without damaging the surface of the microelectronic component.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: August 18, 2020
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Javier A. Delacruz, Paul M. Enquist, Gaius Gillman Fountain, Jr., Ilyas Mohammed
  • Patent number: 10719762
    Abstract: Some embodiments provide a three-dimensional (3D) circuit structure that has two or more vertically stacked bonded layers with a machine-trained network on at least one bonded layer. As described above, each bonded layer can be an IC die or an IC wafer in some embodiments with different embodiments encompassing different combinations of wafers and dies for the different bonded layers. The machine-trained network in some embodiments includes several stages of machine-trained processing nodes with routing fabric that supplies the outputs of earlier stage nodes to drive the inputs of later stage nodes. In some embodiments, the machine-trained network is a neural network and the processing nodes are neurons of the neural network. In some embodiments, one or more parameters associated with each processing node (e.g., each neuron) is defined through machine-trained processes that define the values of these parameters in order to allow the machine-trained network (e.g.
    Type: Grant
    Filed: December 31, 2017
    Date of Patent: July 21, 2020
    Assignee: XCELSIS CORPORATION
    Inventors: Steven L. Teig, Kenneth Duong, Javier DeLaCruz
  • Publication number: 20200227360
    Abstract: Apparatuses relating generally to a microelectronic package having protection from electromagnetic interference are disclosed. In an apparatus thereof, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane with a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Applicant: Invensas Corporation
    Inventors: Shaowu Huang, Javier A. Delacruz
  • Publication number: 20200227367
    Abstract: A bonded structure can include a first reconstituted element comprising a first element and having a first side comprising a first bonding surface and a second side opposite the first side. The first reconstituted element can comprise a first protective material disposed about a first sidewall surface of the first element. The bonded structure can comprise a second reconstituted element comprising a second element and having a first side comprising a second bonding surface and a second side opposite the first side. The first reconstituted element can comprise a second protective material disposed about a second sidewall surface of the second element. The second bonding surface of the first side of the second reconstituted element can be directly bonded to the first bonding surface of the first side of the first reconstituted element without an intervening adhesive along a bonding interface.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 16, 2020
    Inventors: Belgacem Haba, Rajesh Katkar, Ilyas Mohammed, Javier A. DeLaCruz
  • Publication number: 20200227389
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by vertically stacking two or more integrated circuit (IC) dies to at least partially overlap. In this arrangement, several circuit blocks defined on each die (1) overlap with other circuit blocks defined on one or more other dies, and (2) electrically connect to these other circuit blocks through connections that cross one or more bonding layers that bond one or more pairs of dies. In some embodiments, the overlapping, connected circuit block pairs include pairs of computation blocks and pairs of computation and memory blocks. The connections that cross bonding layers to electrically connect circuit blocks on different dies are referred to below as z-axis wiring or connections. This is because these connections traverse completely or mostly in the z-axis of the 3D circuit, with the x-y axes of the 3D circuit defining the planar surface of the IC die substrate or interconnect layers.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Steven L. Teig, Ilyas Mohammed, Kenneth Duong, Javier DeLaCruz
  • Publication number: 20200219771
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 9, 2020
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed
  • Publication number: 20200212013
    Abstract: A three-dimensional stacking technique performed in a wafer-to-wafer fashion reducing the machine movement in production. The wafers are processed with metallic traces and stacked before dicing into separate die stacks. The traces of each layer of the stacks are interconnected via electroless plating.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Javier A. Delacruz
  • Patent number: 10700094
    Abstract: The present disclosure provides chip architectures for FPGAs and other routing implementations that provide for increased memory with high bandwidth, in a reduced size, accessible with reduced latency. Such architectures include a first layer in advanced node and a second layer in legacy node. The first layer includes an active die, active circuitry, and a configurable memory, and the second layer includes a passive die with wiring. The second layer is bonded to the first layer such that the wiring of the second layer interconnects with the active circuitry of the first layer and extends an amount of wiring possible in the first layer.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: June 30, 2020
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Don Draper, Jung Ko, Steven L. Teig
  • Publication number: 20200203330
    Abstract: A microelectronic package may include a substrate having first and second surfaces each extending in first and second directions, a NAND wafer having a memory storage array, a bitline driver chiplet configured to function as a bitline driver, and a wordline driver chiplet configured to function as a wordline driver. The NAND wafer may be coupled to the first surface of the substrate, and the bitline and wordline driver chiplets may each be mounted to a front surface of the NAND wafer. The NAND wafer may have element contacts electrically connected with conductive structure of the substrate. The bitline and wordline driver chiplets may be elongated along the first and second directions, respectively. Front surfaces of the bitline driver chiplet and the wordline driver chiplet may be arranged in a single common plane and may be entirely contained within an outer periphery of the front surface of the NAND wafer.
    Type: Application
    Filed: August 6, 2019
    Publication date: June 25, 2020
    Inventors: Javier A. Delacruz, Stephen Morein
  • Publication number: 20200203318
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Eric M. Nequist, Steven L. Teig, Javier DeLaCruz, Ilyas Mohammed, Laura Mirkarimi
  • Publication number: 20200203316
    Abstract: Aspects of the disclosure relate to forming stacked NAND with multiple memory sections. Forming the stacked NAND with multiple memory sections may include forming a first memory section on a sacrificial substrate. A logic section may be formed on a substrate. The logic section may be bonded to the first memory section. The sacrificial substrate may be removed from the first memory section and a second memory section having a second sacrificial substrate may be formed and bonded to the first memory section.
    Type: Application
    Filed: July 26, 2019
    Publication date: June 25, 2020
    Applicant: Xcelsis Corporation
    Inventors: Stephen Morein, Javier A. Delacruz, Xu Chang, Belgacem Haba, Rajesh Katkar