Patents by Inventor Jay J. Farmer

Jay J. Farmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9403861
    Abstract: The present invention describes metal salen complexes having dianionic counterions. Such complexes can be readily precipitated and provide an economical method for the purification and isolation of the complexes, and are useful to prepare novel polymer compositions.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: August 2, 2016
    Assignee: Novomer, Inc.
    Inventors: Gabriel E. Job, Jay J. Farmer, Anna E. Cherian
  • Patent number: 9399701
    Abstract: The present invention encompasses polymer compositions comprising aliphatic polycarbonate chains containing sites of olefinic unsaturation. In certain embodiments the aliphatic polycarbonate chains comprise sites of olefinic unsaturation capable of participating in radical-promoted olefin polymerizations. In certain embodiments, the invention encompasses composites formed by the polymerization or cross-linking of a combination of olefinic monomers and aliphatic polycarbonate chains containing sites of olefinic unsaturation.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 26, 2016
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Jay J. Farmer, Peter Kopf, David Hurwitz, Thomas R. Welter
  • Patent number: 9394326
    Abstract: The present invention provides oligomeric metal complexes having more than one metal center and methods of using such complexes. The provided metal complexes are useful in the copolymerization of carbon dioxide and epoxides.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 19, 2016
    Assignee: Novomer, Inc.
    Inventor: Jay J. Farmer
  • Patent number: 9388277
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having one or more sites capable of initiating copolymerization of epoxides and CO2, wherein the chain transfer agent contains one or more masked hydroxyl groups. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups, a high percentage of carbonate linkages, and substantially all polycarbonate chains having hydroxyl end groups have no embedded chain transfer agent.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 12, 2016
    Assignee: Novomer, Inc.
    Inventor: Jay J. Farmer
  • Patent number: 9376531
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having two or more sites that can initiate polymerization. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups and a high percentage of carbonate linkages. The compositions are further characterized in that they contain polymer chains having an embedded polyfunctional moiety linked to a plurality of individual polycarbonate chains.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 28, 2016
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Geoffrey W. Coates, Anna E. Cherian, Chris A. Simoneau, Alexei A. Gridnev, Jay J. Farmer
  • Patent number: 9371334
    Abstract: Among other things, the present invention encompasses methods of synthesizing salicylaldehyde derivatives comprising the steps of: a) providing salicylaldehyde or a derivative thereof, b) forming an anhydro dimer of the provided salicylaldehyde compound, c) performing one or more chemical transformations on the anhydro dimer and d) hydrolyzing the anhydro dimer to provide a salicylaldehyde derivative different from that provided in step (a).
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: June 21, 2016
    Assignee: Novomer, Inc.
    Inventors: Jay J. Farmer, Gabriel E. Job
  • Patent number: 9359474
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: November 3, 2012
    Date of Patent: June 7, 2016
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Gabriel Job, Jay J. Farmer
  • Publication number: 20160137777
    Abstract: The present invention provides bimetallic complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to one or more active metal centers of the complex.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventor: Jay J. Farmer
  • Patent number: 9284406
    Abstract: The present invention provides bimetallic complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to one or more active metal centers of the complex.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: March 15, 2016
    Assignee: Novomer, Inc.
    Inventor: Jay J. Farmer
  • Publication number: 20150299083
    Abstract: In one aspect, the present invention encompasses integrated processes for the conversion of epoxides to acrylic acid derivatives and polyesters. In certain embodiments, the methods of the present invention comprise the steps of: providing a feedstock stream comprising an epoxide and carbon monoxide; contacting the feedstock stream with a metal carbonyl in a first reaction zone to effect conversion of at least a portion of the provided epoxide to a beta lactone; directing the effluent from the first reaction zone to a second reaction zone where the beta lactone is subjected to conditions that convert it to a compound selected from the group consisting of: an alpha beta unsaturated acid, an alpha beta unsaturated ester, an alpha beta unsaturated amide, and an optionally substituted polypropiolactone polymer; and isolating a final product comprising the alpha-beta unsaturated carboxylic acid, the alpha-beta unsaturated ester, the alpha-beta unsaturated amide or the polypropiolactone.
    Type: Application
    Filed: June 29, 2015
    Publication date: October 22, 2015
    Inventors: Richard V. Porcelli, Jay J. Farmer, Robert E. Lapointe
  • Publication number: 20150299386
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having two or more sites that can initiate polymerization. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups and a high percentage of carbonate linkages. The compositions are further characterized in that they contain polymer chains having an embedded polyfunctional moiety linked to a plurality of individual polycarbonate chains.
    Type: Application
    Filed: December 17, 2014
    Publication date: October 22, 2015
    Inventors: Scott D. Allen, Geoffrey W. Coates, Anna E. Cherian, Chris A. Simoneau, Alexei A. Gridnev, Jay J. Farmer
  • Publication number: 20150252145
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Application
    Filed: February 6, 2015
    Publication date: September 10, 2015
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Publication number: 20150232496
    Abstract: The present invention provides novel metal complexes, methods of making, and methods of using the same.
    Type: Application
    Filed: August 22, 2013
    Publication date: August 20, 2015
    Inventors: Gabriel Job, Scott D. Allen, Christopher Simoneau, Ronald Valente, Jay J. Farmer
  • Patent number: 9096510
    Abstract: The methods of the present invention comprise the steps of: providing a feedstock stream comprising an epoxide and carbon monoxide; contacting the feedstock stream with a metal carbonyl in a first reaction zone to effect conversion of at least a portion of the provided epoxide to a beta lactone; directing the effluent from the first reaction zone to a second reaction zone where the beta lactone is subjected to conditions that convert it to a compound selected from the group consisting of: an alpha beta unsaturated acid, an alpha beta unsaturated ester, an alpha beta unsaturated amide, and an optionally substituted polypropiolactone polymer; and isolating a final product comprising the alpha-beta unsaturated carboxylic acid, the alpha-beta unsaturated ester, the alpha-beta unsaturated amide or the polypropiolactone.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 4, 2015
    Assignee: NOVOMER, INC.
    Inventors: Richard V. Porcelli, Jay J. Farmer, Robert E. Lapointe
  • Publication number: 20150158901
    Abstract: The present invention provides macrocyclic compounds useful as therapeutic agents of the formula: or a pharmaceutically acceptable salt, ester, N-oxide, or prodrug thereof, wherein T, R1, R2, R3, D, E, F, and G are as defined herein. More particularly, these compounds are useful as anti-infective, antiproliferative, anti-inflammatory and prokinetic agents.
    Type: Application
    Filed: July 9, 2014
    Publication date: June 11, 2015
    Inventors: Jay J. Farmer, Ashoke Bhattacharjee, Yi Chen, Joel A. Goldberg, Joseph A. Ippolito, Zoltan F. Kanyo, Rongliang Lou, Adegboyega K. Oyelere, Edward C. Sherer, Joyce A. Sutcliffe, Deping Wang, Yusheng Wu, Yanming Du
  • Publication number: 20150152221
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having one or more sites capable of initiating copolymerization of epoxides and CO2, wherein the chain transfer agent contains one or more masked hydroxyl groups. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups, a high percentage of carbonate linkages, and substantially all polycarbonate chains having hydroxyl end groups have no embedded chain transfer agent.
    Type: Application
    Filed: May 24, 2013
    Publication date: June 4, 2015
    Inventor: Jay J. Farmer
  • Publication number: 20150072970
    Abstract: The present invention relates generally to the field of anti-infective, anti-proliferative, anti-inflammatory, and prokinetic agents. More particularly, the invention relates to a family of compounds having both a biaryl moiety and at least one heterocylic moiety that are useful as such agents.
    Type: Application
    Filed: May 19, 2014
    Publication date: March 12, 2015
    Applicant: MELINTA THERAPEUTICS, INC.
    Inventors: Jiacheng Zhou, Ashoke Bhattacharjee, Shili Chen, Yi Chen, Jay J. Farmer, Joel A. Goldberg, Roger Hanselmann, Rongliang Lou, Alia Orbin, Adegboyega K. Oyelere, Joseph M. Salvino, Dane M. Springer, Jennifer Tran, Deping Wang, Yusheng Wu
  • Patent number: 8956989
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 17, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Patent number: 8951930
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 10, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Patent number: 8946109
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 3, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe