Patents by Inventor Jayeeta MONDAL

Jayeeta MONDAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967133
    Abstract: Embodiments of the present disclosure provide a method and system for co-operative and cascaded inference on the edge device using an integrated Deep Learning (DL) model for object detection and localization, which comprises a strong classifier trained on largely available datasets and a weak localizer trained on scarcely available datasets, and work in coordination to first detect object (fire) in every input frame using the classifier, and then trigger a localizer only for the frames that are classified as fire frames. The classifier and the localizer of the integrated DL model are jointly trained using Multitask Learning approach. Works in literature hardly address the technical challenge of embedding such integrated DL model to be deployed on edge devices. The method provides an optimal hardware software partitioning approach for components or segments of the integrated DL model which achieves a tradeoff between latency and accuracy in object classification and localization.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: April 23, 2024
    Assignee: TATA CONSULTANCY SERVICES LIMITED
    Inventors: Swarnava Dey, Jayeeta Mondal, Jeet Dutta, Arpan Pal, Arijit Mukherjee, Balamuralidhar Purushothaman
  • Publication number: 20220375199
    Abstract: Embodiments of the present disclosure provide a method and system for co-operative and cascaded inference on the edge device using an integrated Deep Learning (DL) model for object detection and localization, which comprises a strong classifier trained on largely available datasets and a weak localizer trained on scarcely available datasets, and work in coordination to first detect object (fire) in every input frame using the classifier, and then trigger a localizer only for the frames that are classified as fire frames. The classifier and the localizer of the integrated DL model are jointly trained using Multitask Learning approach. Works in literature hardly address the technical challenge of embedding such integrated DL model to be deployed on edge devices. The method provides an optimal hardware software partitioning approach for components or segments of the integrated DL model which achieves a tradeoff between latency and accuracy in object classification and localization.
    Type: Application
    Filed: October 12, 2021
    Publication date: November 24, 2022
    Applicant: Tata Consultancy Services Limited
    Inventors: Swarnava DEY, JAYEETA MONDAL, JEET DUTTA, ARPAN PAL, ARIJIT MUKHERJEE, BALAMURALIDHAR PURUSHOTHAMAN
  • Publication number: 20220284293
    Abstract: Small and compact Deep Learning models are required for embedded Al in several domains. In many industrial use-cases, there are requirements to transform already trained models to ensemble embedded systems or re-train those for a given deployment scenario, with limited data for transfer learning. Moreover, the hardware platforms used in embedded application include FPGAs, AI hardware accelerators, System-on-Chips and on-premises computing elements (Fog/Network Edge). These are interconnected through heterogenous bus/network with different capacities. Method of the present disclosure finds how to automatically partition a given DNN into ensemble devices, considering the effect of accuracy—latency power—tradeoff, due to intermediate compression and effect of quantization due to conversion to AI accelerator SDKs.
    Type: Application
    Filed: September 14, 2021
    Publication date: September 8, 2022
    Applicant: Tata Consultancy Services Limited
    Inventors: Swarnava DEY, Arpan PAL, Gitesh KULKARNI, Chirabrata BHAUMIK, Arijit UKIL, Jayeeta MONDAL, Ishan SAHU, Aakash TYAGI, Amit SWAIN, Arijit MUKHERJEE