Patents by Inventor Jayesh Nath

Jayesh Nath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10372166
    Abstract: A housing for an electronic device is disclosed. The housing includes a first conductive component defining a first interface surface, a second conductive component defining a second interface surface facing the first interface surface, and a joint structure between the first and second interface surfaces. The joint structure includes a molded element forming a portion of an exterior surface of the housing, and a sealing member forming a watertight seal between the first and second conductive components. Methods of forming the electronic device housing are also disclosed.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 6, 2019
    Assignee: APPLE INC.
    Inventors: Brian M. Gable, Carlo Di Nallo, Colin M. Ely, Craig A. Horton, Erik G. de Jong, Fletcher R. Rothkopf, Henry B. Wettersten, Hoishun Li, Jason C. Sauers, Jayesh Nath, Mario Martinis, Mattia Pascolini, Michael P. Coleman, Rex T. Ehman, Zheyu Wang
  • Patent number: 10367252
    Abstract: An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 30, 2019
    Assignee: Apple Inc.
    Inventors: Rex T. Ehman, Jayesh Nath, Carlo Di Nallo, James G. Horiuchi, Erik G. de Jong, Jason C. Sauers, Makiko K. Brzezinski, Siwen Yong, Lijun Zhang, Yi Jiang, Zheyu Wang, Mario Martinis, Eduardo Da Costa Bras Lima, Xu Han, Mattia Pascolini, Trevor J. Ness
  • Patent number: 10355344
    Abstract: An electronic device such as a wristwatch may be provided with a wireless local area network (WLAN) transceiver, satellite receiver, and cellular transceiver. A first antenna may include a radiating slot between a conductive housing wall and a display module. A second antenna may include conductive structures that radiate through a rear face of the device. The WLAN transceiver and the satellite receiver may be coupled to the first antenna. A switch may be coupled between the cellular transceiver and the first and second antennas. Control circuitry may adjust the switch to route signals between the cellular transceiver and a selected one of the first and second antennas based on wireless performance metric data so that the antenna exhibiting superior wireless performance at cellular telephone frequencies is used for cellular telephone communications regardless of environmental conditions.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: July 16, 2019
    Assignee: Apple Inc.
    Inventors: Andrea Ruaro, Carlo Di Nallo, Dimitrios Papantonis, Eduardo Jorge Da Costa Bras Lima, Jayesh Nath, Jiaxiao Niu, Mario Martinis, Mattia Pascolini, Zheyu Wang
  • Patent number: 10290941
    Abstract: An electronic device may have a display in a housing with a metal wall. An antenna may have an antenna ground formed from the wall and an antenna resonating element. Transceiver circuitry may be coupled to an antenna feed that extends between the antenna resonating element and the antenna ground. A return path may extend between the antenna resonating element and the antenna ground in parallel with the feed. The antenna resonating element may have segments that are coupled by a frequency dependent filter. At a first frequency, the filter may have a low impedance so that the antenna resonating element has a first effectively length. At a second frequency that is greater than the first frequency, the filter may have a high impedance so that the antenna resonating element has a second effective length that is shorter than the first effective length.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: May 14, 2019
    Assignee: Apple Inc.
    Inventors: Erdinc Irci, Carlo Di Nallo, Jayesh Nath, Zheyu Wang, Eduardo Da Costa Bras Lima, Hongfei Hu, Mario Martinis, Mattia Pascolini
  • Publication number: 20190123431
    Abstract: An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
    Type: Application
    Filed: December 19, 2018
    Publication date: April 25, 2019
    Inventors: Rex T. Ehman, Jayesh Nath, Carlo Di Nallo, James G. Horiuchi, Erik G. de Jong, Jason C. Sauers, Makiko K. Brzezinski, Siwen Yong, Lijun Zhang, Yi Jiang, Zheyu Wang, Mario Martinis, Eduardo Da costa Bras Lima, Xu Han, Mattia Pascolini, Trevor J. Ness
  • Patent number: 10250289
    Abstract: An electronic device may have a display cover layer mounted to a metal housing. Electrical component layers such as a display layer, touch sensor layer, and near-field communications antenna layer may be mounted under the display cover layer. An antenna feed may have a positive feed terminal coupled to the electrical component layers and a ground feed terminal coupled to the metal housing. The electrical component layers may serve as an antenna resonating element for an antenna. The antenna may cover cellular telephone bands and may receive satellite navigation system signals. A system-in-package device may be mounted to the metal housing. A flexible printed circuit may extend between the electrical component layers and the system-in-package device. A mounting bracket for the system-in-package device may be provided with electrical isolation to enhance antenna performance in bands such as a satellite navigation system band.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: April 2, 2019
    Assignee: Apple Inc.
    Inventors: Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Jiaxiao Niu, Mattia Pascolini, Jayesh Nath, Carlo Di Nallo, Zheyu Wang, Mario Martinis, Eduardo Jorge Da Costa Bras Lima, Steven P. Cardinali, Rex Tyler Ehman, James G. Horiuchi, Trevor J. Ness, Scott D. Morrison, Siddharth Nangia, Mushtaq A. Sarwar
  • Publication number: 20190081387
    Abstract: Aspects of the subject technology relate to electronic devices with antennas. The antenna may be a display-integrated antenna. An antenna feed for the antenna may be located in a recess in a sidewall of a housing of the device. The antenna feed may be coupled to transceiver circuitry on a logic board of the device by a pair of flex circuits. A first one of the pair of flex circuits may form a portion of an antenna feed assembly. A second one of the pair of flex circuits may be an impedance-matching flex having an end that is soldered to the main logic board. The antenna may be coupled to a conductive portion of the housing of the device.
    Type: Application
    Filed: January 18, 2018
    Publication date: March 14, 2019
    Inventors: Sameer PANDYA, Mario MARTINIS, Baris OZGEN, Tyler S. BUSHNELL, Sherry TANG, Henry H. YANG, Christopher M. WERNER, Jayesh NATH, Carlo DI NALLO, Andrea RUARO
  • Publication number: 20190074719
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074706
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074724
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Publication number: 20190074586
    Abstract: An electronic device such as a wristwatch may have a housing with metal sidewalls and a display having conductive display structures. Printed circuits having corresponding ground traces may be coupled to the display for conveying data to and/or from the display. The conductive display structures may be separated from the metal sidewalls by a gap. A conductive interconnect may be coupled to the metal sidewalls and may extend across the gap to the conductive display structures. The conductive interconnect may be coupled to the ground traces on the printed circuits and/or may be shorted or capacitively coupled to the conductive display structures. When configured in this way, the metal sidewalls, the conductive display structures, and the conductive interconnect may define the edges of a slot antenna resonating element for a slot antenna.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Andrea Ruaro, Carlo Di Nallo, Eduardo Jorge Da Costa Bras Lima, Jayesh Nath, Mario Martinis, Mattia Pascolini, Zheyu Wang, Sameer Pandya
  • Publication number: 20190074729
    Abstract: Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Michael B. Wittenberg, Makiko K. Brzezinski, Stefan A. Kowalski, Christopher S. Graham, Morgan T. McClure, Erik G. de Jong, Trevor J. Ness, Peter J. Kardassakis, Jayesh Nath, Adam T. Clavelle, Rex Tyler Ehman
  • Patent number: 10181640
    Abstract: An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 15, 2019
    Assignee: Apple Inc.
    Inventors: Rex T. Ehman, Jayesh Nath, Carlo Di Nallo, James G. Horiuchi, Erik G. de Jong, Jason C. Sauers, Makiko K. Brzezinski, Siwen Yong, Lijun Zhang, Yi Jiang, Zheyu Wang, Mario Martinis, Eduardo Da Costa Bras Lima, Xu Han, Mattia Pascolini, Trevor J. Ness
  • Patent number: 10153554
    Abstract: An electronic device may have a housing and other structures that form an antenna ground for an antenna. An antenna resonating element arm for the antenna may extend along the periphery of the housing. The resonating element arm may have opposing first and second ends. A return path may couple the resonating element arm to the antenna ground at the first end. An antenna feed may be coupled between the resonating element arm and the antenna ground in parallel with the return path. Electrical components such as first and second capacitors may be coupled between the antenna resonating element arm and the antenna ground. A first of the capacitors may be coupled between the antenna resonating element arm and the antenna ground at a location between the first and second ends. A second of the capacitors may be coupled between the second end and the antenna ground.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: December 11, 2018
    Assignee: Apple Inc.
    Inventors: Mario Martinis, Carlo Di Nallo, Jayesh Nath, Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Mattia Pascolini, Zheyu Wang, Eduardo Jorge Da Costa Bras Lima
  • Patent number: 10103423
    Abstract: A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: October 16, 2018
    Assignee: Apple Inc.
    Inventors: Daniel W. Jarvis, Richard Hung Minh Dinh, Miguel C. Christophy, Hao Xu, Jayesh Nath, Jared M. Kole, Mattia Pascolini, Ruben Caballero, Jennifer M. Edwards, Peter I. Bevelacqua, Robert W. Schlub
  • Patent number: 10090570
    Abstract: Various embodiments provide for waveguide assemblies which may be utilized in wireless communication systems. Various embodiments may allow for waveguide assemblies to be assembled using tools and methodologies that are simpler than the conventional alternatives. Some embodiments provide for a waveguide assembly that comprises a straight tubular portion configured to be shortened, using simple techniques and tools, in order to fit into a waveguide assembly. For instance, for some embodiments, the waveguide assembly may be configured such that the straight portion can be shortened, at a cross section of the portion, using a basic cutting tool, such a hacksaw. In some embodiments, the straight portion may be further configured such that regardless of whether the straight tubular portion is shortened, the waveguide assembly remains capable of coupling to flanges, which facilitate coupling the straight tubular portion to connectable assemblies, such as other waveguide assemblies, radio equipment, or antennas.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: October 2, 2018
    Assignee: Aviat U.S., Inc.
    Inventors: Edwin Nealis, Jayesh Nath
  • Publication number: 20180277936
    Abstract: A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing. A hybrid antenna is also described herein. The hybrid antenna can include first and second flexible members capable of facilitating wireless communication, where the first and second flexible members are affixed to one another via a metal member.
    Type: Application
    Filed: May 31, 2018
    Publication date: September 27, 2018
    Inventors: Richard Hung Minh Dinh, Hao Xu, Jayesh Nath, Peter I. Bevelacqua, Jennifer M. Edwards, Daniel W. Jarvis, Jared M. Kole, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Publication number: 20180248634
    Abstract: An electronic device such as a wristwatch may include a housing with a dielectric rear wall. Wireless circuitry in the device may include an antenna formed on or over the rear wall. Matching circuitry may match the impedance of the antenna to the rest of the wireless circuitry. Processing circuitry may gather receive signal strength information and/or phase and magnitude information from radio-frequency signals received through the rear wall. The processing circuitry may track the position of the device and accumulate user statistics over time. The processing circuitry may determine whether changes in loading of the antenna through the dielectric rear housing wall have occurred based on the receive signal strength information, user statistics, and/or phase and magnitude information. If a change is detected, the processing circuitry may adjust the matching circuitry to mitigate any potential antenna detuning as a result of the change.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 30, 2018
    Inventors: Mattia Pascolini, Eduardo Jorge da Costa Bras Lima, Carlo Di Nallo, Andrea Ruaro, Mario Martinis, Zheyu Wang, Jayesh Nath
  • Publication number: 20180191311
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Applicant: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C.M. Pham, Jayesh Nath, Ying Shen
  • Publication number: 20180090826
    Abstract: An electronic device such as a wristwatch may have a housing with metal sidewalls and a dielectric rear wall. The metal sidewalls may form an antenna ground for an antenna. The antenna may include an antenna resonating element formed from conductive traces patterned directly onto an interior surface of the dielectric rear wall. The conductive traces may define a slot at the dielectric rear wall. A coil and a sensor may be mounted to the dielectric rear wall within the slot. Radio-frequency transceiver circuitry may be coupled to the conductive traces and the antenna ground and may transmit and receive radio-frequency signals through the dielectric rear wall using the antenna. Wireless power receiver circuitry may use the coil to receive wireless power signals through the dielectric rear wall. The sensor may emit and/or receive light through a transparent window in the dielectric rear wall.
    Type: Application
    Filed: July 20, 2017
    Publication date: March 29, 2018
    Inventors: Eduardo Jorge Da Costa Bras Lima, Andrea Ruaro, Carlo Di Nallo, Jayesh Nath, Mario Martinis, Zheyu Wang, Mattia Pascolini