Patents by Inventor Jean-Marc Jot

Jean-Marc Jot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210152970
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reflection of the input audio signal in a surface of the virtual environment.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 20, 2021
    Inventors: Jean-Marc JOT, Samuel Charles Dicker, Brian Lloyd Schmidt, Remi Samuel Audfray
  • Patent number: 11012778
    Abstract: A method of processing an audio signal is disclosed. According to embodiments of the method, magnitude response information of a prototype filter is determined. The magnitude response information includes a plurality of gain values, at least one of which includes a first gain corresponding to a first frequency. The magnitude response information of the prototype filter is stored. The magnitude response information of the prototype filter at the first frequency is retrieved. Gains are computed for a plurality of control frequencies based on the retrieved magnitude response information of the prototype filter at the first frequency, and the computed gains are applied to the audio signal.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: May 18, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210127220
    Abstract: Examples of the disclosure describe systems and methods for estimating acoustic properties of an environment. In an example method, a first audio signal is received via a microphone of a wearable head device. An envelope of the first audio signal is determined, and a first reverberation time is estimated based on the envelope of the first audio signal. A difference between the first reverberation time and a second reverberation time is determined. A change in the environment is determined based on the difference between the first reverberation time and the second reverberation time. A second audio signal is presented via a speaker of a wearable head device, wherein the second audio signal is based on the second reverberation time.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 29, 2021
    Inventors: Mathieu PARVAIX, Jean-Marc JOT, Colby Nelson LEIDER
  • Patent number: 10979844
    Abstract: An audio signal processing system can be configured to provide virtualized audio information in a three-dimensional soundfield using at least a pair of loudspeakers or headphones. The system can include an audio input configured to receive audio program information that includes at least N discrete audio signals, a first virtualization processor circuit configured to generate intermediate virtualized audio information by filtering M of the N audio signals, and a second virtualization processor circuit configured to generate further virtualized audio information by differently filtering K of the N audio signals, wherein K, M, and N are integers. The system can include an audio signal combination circuit to combine the intermediate virtualized audio information with at least one of the N audio signals, other than the M audio signals, to render fewer than N audio signals for transmission to a second virtualization processor circuit.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 13, 2021
    Assignee: DTS, Inc.
    Inventors: Daekyoung Noh, Jean-Marc Jot, Twafik Mohamed
  • Publication number: 20210084357
    Abstract: A method of presenting an audio signal to a user of a mixed reality environment is disclosed, the method comprising the steps of detecting a first audio signal in the mixed reality environment, where the first audio signal is a real audio signal; identifying a virtual object intersected by the first audio signal in the mixed reality environment; identifying a listener coordinate associated with the user; determining, using the virtual object and the listener coordinate, a transfer function; applying the transfer function to the first audio signal to produce a second audio signal; and presenting, to the user, the second audio signal.
    Type: Application
    Filed: February 15, 2019
    Publication date: March 18, 2021
    Inventors: Anastasia Andreyevna TAJIK, Jean-Marc JOT
  • Patent number: 10952010
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reverberation of the input audio signal in the virtual environment.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 16, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210065675
    Abstract: Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)).
    Type: Application
    Filed: September 14, 2020
    Publication date: March 4, 2021
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210058728
    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 25, 2021
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT, Samuel Chrles DICKER
  • Publication number: 20210043223
    Abstract: In some embodiments, a first audio signal is received via a first microphone, and a first probability of voice activity is determined based on the first audio signal. A second audio signal is received via a second microphone, and a second probability of voice activity is determined based on the first and second audio signals. Whether a first threshold of voice activity is met is determined based on the first and second probabilities of voice activity. In accordance with a determination that a first threshold of voice activity is met, it is determined that a voice onset has occurred, and an alert is transmitted to a processor based on the determination that the voice onset has occurred. In accordance with a determination that a first threshold of voice activity is not met, it is not determined that a voice onset has occurred.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 11, 2021
    Inventors: Jung-Suk LEE, Jean-Marc JOT
  • Patent number: 10902838
    Abstract: Embodiments of systems and methods are described for reducing undesired leakage energy produced by a non-front-facing speaker in a multi-speaker system. For example, the multi-speaker system can include an array of forward-facing speakers, one or more upward-facing speakers, and/or one or more side-facing speakers. Filters coupled to any two of the speakers in the multi-speaker system can generate audio signals output by the coupled speakers to reduce, attenuate, or cancel a portion of an audio signal output by one or more non-front-facing speakers that acoustically propagates along a direct path from the respective non-front-facing speaker to a listening position in a listening area in front of the multi-speaker system.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 26, 2021
    Assignee: DTS, Inc.
    Inventors: Suketu Kamdar, Zesen Zhuang, Martin Walsh, Edward Stein, Michael M. Goodwin, Jean-Marc Jot
  • Patent number: 10887694
    Abstract: A method of processing an audio signal is disclosed. According to embodiments of the method, magnitude response information of a prototype filter is determined. The magnitude response information includes a plurality of gain values, at least one of which includes a first gain corresponding to a first frequency. The magnitude response information of the prototype filter is stored. The magnitude response information of the prototype filter at the first frequency is retrieved. Gains are computed for a plurality of control frequencies based on the retrieved magnitude response information of the prototype filter at the first frequency, and the computed gains are applied to the audio signal.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: January 5, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Patent number: 10863301
    Abstract: A method of presenting an audio signal to a user of a mixed reality environment is disclosed. According to examples of the method, an audio event associated with the mixed reality environment is detected. The audio event is associated with a first audio signal. A location of the user with respect to the mixed reality environment is determined. An acoustic region associated with the location of the user is identified. A first acoustic parameter associated with the first acoustic region is determined. A transfer function is determined using the first acoustic parameter. The transfer function is applied to the first audio signal to produce a second audio signal, which is then presented to the user.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Brian Lloyd Schmidt, Jehangir Tajik, Jean-Marc Jot
  • Patent number: 10863300
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reflection of the input audio signal in a surface of the virtual environment.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 8, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Jean-Marc Jot, Samuel Charles Dicker, Brian Lloyd Schmidt, Remi Samuel Audfray
  • Publication number: 20200366989
    Abstract: A method of processing an audio signal is disclosed. According to embodiments of the method, magnitude response information of a prototype filter is determined. The magnitude response information includes a plurality of gain values, at least one of which includes a first gain corresponding to a first frequency. The magnitude response information of the prototype filter is stored. The magnitude response information of the prototype filter at the first frequency is retrieved. Gains are computed for a plurality of control frequencies based on the retrieved magnitude response information of the prototype filter at the first frequency, and the computed gains are applied to the audio signal.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT, Samuel Charles DICKER
  • Patent number: 10841727
    Abstract: A system and method for providing low interaural coherence at low frequencies is disclosed. In some embodiments, the system may include a reverberator and a low-frequency interaural coherence control system. The reverberator may include two sets of comb filters, one for the left ear output signal and one for the right ear output signal. The low-frequency interaural coherence control system can include a plurality of sections, each section can be configured to control a certain frequency range of the signals that propagate through the given section. The sections may include a left high-frequency section for the left ear output signal and a right high-frequency section for the right ear output signal. The sections may also include a shared low-frequency section that can output signals to be combined by combiners of the left and right high-frequency sections.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: November 17, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot
  • Patent number: 10810992
    Abstract: Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)).
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: October 20, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20200322747
    Abstract: Systems and methods discussed herein can provide three-dimensional audio virtualization with sweet spot adaptation. In an example, an audio processor circuit can be used to update audio signals for sweet spot adaptation based on information from at least one depth sensor or camera about a listener position in a listening environment.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Inventors: Vlad Ionut Ursachi, Guangji Shi, Daekyoung Noh, Themis George Katsianos, Antonius Kalker, Petronel Bigioi, Jean-Marc Jot
  • Publication number: 20200322749
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reverberation of the input audio signal in the virtual environment.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT, Samuel Charles DICKER
  • Publication number: 20200302908
    Abstract: Embodiments of systems and methods are described for reducing undesired leakage energy produced by a non-front-facing speaker in a multi-speaker system. For example, the multi-speaker system can include an array of forward-facing speakers, one or more upward-facing speakers, and/or one or more side-facing speakers. Filters coupled to any two of the speakers in the multi-speaker system can generate audio signals output by the coupled speakers to reduce, attenuate, or cancel a portion of an audio signal output by one or more non-front-facing speakers that acoustically propagates along a direct path from the respective non-front-facing speaker to a listening position in a listening area in front of the multi-speaker system.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Suketu Kamdar, Zesen Zhuang, Martin Walsh, Edward Stein, Michael M. Goodwin, Jean-Marc Jot
  • Patent number: 10779103
    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: September 15, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker