Patents by Inventor Jean-Oliver Plouchart

Jean-Oliver Plouchart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10983192
    Abstract: Polarimetric transceiver front-ends and polarimetric phased array transceivers include two receive paths configured to receive signals from an antenna, each including a respective variable phase shifter. A first transmit path is connected to the variable phase shifter of one of the two receive paths and is configured to send signals to the antenna. A transmit/receive switch is configured to select between the first transmit path and the two receive paths for signals. The transmit/receive switch has an element that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: April 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Mark Ferriss, Arun S. Natarajan, Benjamin D. Parker, Jean-Oliver Plouchart, Scott K. Reynolds, Mihai A. Sanduleanu, Alberto Valdes Garcia
  • Publication number: 20210011116
    Abstract: Polarimetric transceiver front-ends and polarimetric phased array transceivers include two receive paths configured to receive signals from an antenna, each including a respective variable phase shifter. A first transmit path is connected to the variable phase shifter of one of the two receive paths and is configured to send signals to the antenna. A transmit/receive switch is configured to select between the first transmit path and the two receive paths for signals. The transmit/receive switch has an element that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 14, 2021
    Inventors: HERSCHEL A. AINSPAN, MARK FERRISS, ARUN S. NATARAJAN, BENJAMIN D. PARKER, JEAN-OLIVER PLOUCHART, SCOTT K. REYNOLDS, MIHAI A. SANDULEANU, ALBERTO VALDES GARCIA
  • Patent number: 10454239
    Abstract: After forming a monolithically integrated device including a laser and a modulator on a semiconductor substrate, an anti-reflection coating layer is formed over the monolithically integrated device and the semiconductor substrate by an atomic layer deposition (ALD) process. The anti-reflection coating layer is lithographically patterned so that an anti-reflection coating is only present on exposed surfaces of the modulator. After forming an etch stop layer portion to protect the anti-reflection coating, a high reflection coating layer is formed over the etch stop layer, the laser and the semiconductor structure by ALD and lithographically patterned to provide a high reflection coating that is formed solely on a non-output facet of the laser.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Ning Li, Jean-Oliver Plouchart, Devendra K. Sadana
  • Patent number: 10416283
    Abstract: A polarimetric transceiver front-end includes two receive paths configured to receive signals from an antenna, each receive path corresponding to a respective polarization. Each front-end includes a variable amplifier and a variable phase shifter; a first transmit path configured to send signals to the antenna, where the transmit path is connected to the variable phase shifter of one of the two receive paths and includes a variable amplifier; and a transmit/receive switch configured to select between the first transmit path and the two receive paths for signals, where the transmit/receive switch includes a quarter-wavelength transmission line that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: September 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herschel A. Ainspan, Mark Ferriss, Arun S. Natarajan, Benjamin D. Parker, Jean-Oliver Plouchart, Scott K. Reynolds, Mihai A. Sanduleanu, Alberto Valdes Garcia
  • Patent number: 10218150
    Abstract: After forming a monolithically integrated device including a laser and a modulator on a semiconductor substrate, an anti-reflection coating layer is formed over the monolithically integrated device and the semiconductor substrate by an atomic layer deposition (ALD) process. The anti-reflection coating layer is lithographically patterned so that an anti-reflection coating is only present on exposed surfaces of the modulator. After forming an etch stop layer portion to protect the anti-reflection coating, a high reflection coating layer is formed over the etch stop layer, the laser and the semiconductor structure by ALD and lithographically patterned to provide a high reflection coating that is formed solely on a non-output facet of the laser.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Ning Li, Jean-Oliver Plouchart, Devendra K. Sadana
  • Publication number: 20180138655
    Abstract: After forming a monolithically integrated device including a laser and a modulator on a semiconductor substrate, an anti-reflection coating layer is formed over the monolithically integrated device and the semiconductor substrate by an atomic layer deposition (ALD) process. The anti-reflection coating layer is lithographically patterned so that an anti-reflection coating is only present on exposed surfaces of the modulator. After forming an etch stop layer portion to protect the anti-reflection coating, a high reflection coating layer is formed over the etch stop layer, the laser and the semiconductor structure by ALD and lithographically patterned to provide a high reflection coating that is formed solely on a non-output facet of the laser.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Effendi Leobandung, Ning Li, Jean-Oliver Plouchart, Devendra K. Sadana
  • Patent number: 9935236
    Abstract: An optoelectronic light emission device is provided that includes a gain region of at least one type III-V semiconductor layer that is present on a lattice mismatched semiconductor substrate. The gain region of the type III-V semiconductor layer has a nanoscale area using nano-cavities. The optoelectronic light emission device is free of defects.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Effendi Leobandung, Ning Li, Tak H. Ning, Jean-Oliver Plouchart, Devendra K. Sadana
  • Patent number: 9893489
    Abstract: After forming a monolithically integrated device including a laser and a modulator on a semiconductor substrate, an anti-reflection coating layer is formed over the monolithically integrated device and the semiconductor substrate by an atomic layer deposition (ALD) process. The anti-reflection coating layer is lithographically patterned so that an anti-reflection coating is only present on exposed surfaces of the modulator. After forming an etch stop layer portion to protect the anti-reflection coating, a high reflection coating layer is formed over the etch stop layer, the laser and the semiconductor structure by ALD and lithographically patterned to provide a high reflection coating that is formed solely on a non-output facet of the laser.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Ning Li, Jean-Oliver Plouchart, Devendra K. Sadana
  • Patent number: 9728671
    Abstract: An optoelectronic light emission device is provided that includes a gain region of at least one type III-V semiconductor layer that is present on a lattice mismatched semiconductor substrate. The gain region of the type III-V semiconductor layer has a nanoscale area using nano-cavities. The optoelectronic light emission device is free of defects.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 8, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Effendi Leobandung, Ning Li, Tak H. Ning, Jean-Oliver Plouchart, Devendra K. Sadana
  • Publication number: 20170063029
    Abstract: After forming a monolithically integrated device including a laser and a modulator on a semiconductor substrate, an anti-reflection coating layer is formed over the monolithically integrated device and the semiconductor substrate by an atomic layer deposition (ALD) process. The anti-reflection coating layer is lithographically patterned so that an anti-reflection coating is only present on exposed surfaces of the modulator. After forming an etch stop layer portion to protect the anti-reflection coating, a high reflection coating layer is formed over the etch stop layer, the laser and the semiconductor structure by ALD and lithographically patterned to provide a high reflection coating that is formed solely on a non-output facet of the laser.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Effendi Leobandung, Ning Li, Jean-Oliver Plouchart, Devendra K. Sadana
  • Publication number: 20170063028
    Abstract: After forming a monolithically integrated device including a laser and a modulator on a semiconductor substrate, an anti-reflection coating layer is formed over the monolithically integrated device and the semiconductor substrate by an atomic layer deposition (ALD) process. The anti-reflection coating layer is lithographically patterned so that an anti-reflection coating is only present on exposed surfaces of the modulator. After forming an etch stop layer portion to protect the anti-reflection coating, a high reflection coating layer is formed over the etch stop layer, the laser and the semiconductor structure by ALD and lithographically patterned to provide a high reflection coating that is formed solely on a non-output facet of the laser.
    Type: Application
    Filed: August 2, 2016
    Publication date: March 2, 2017
    Inventors: Effendi Leobandung, Ning Li, Jean-Oliver Plouchart, Devendra K. Sadana
  • Publication number: 20160141448
    Abstract: An optoelectronic light emission device is provided that includes a gain region of at least one type III-V semiconductor layer that is present on a lattice mismatched semiconductor substrate. The gain region of the type III-V semiconductor layer has a nanoscale area using nano-cavities.
    Type: Application
    Filed: June 19, 2015
    Publication date: May 19, 2016
    Inventors: Effendi Leobandung, Ning Li, Tak H. Ning, Jean-Oliver Plouchart, Devendra K. Sadana
  • Publication number: 20150362583
    Abstract: A polarimetric transceiver front-end includes two receive paths configured to receive signals from an antenna, each receive path corresponding to a respective polarization. Each front-end includes a variable amplifier and a variable phase shifter; a first transmit path configured to send signals to the antenna, where the transmit path is connected to the variable phase shifter of one of the two receive paths and includes a variable amplifier; and a transmit/receive switch configured to select between the first transmit path and the two receive paths for signals, where the transmit/receive switch includes a quarter-wavelength transmission line that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 17, 2015
    Inventors: HERSCHEL A. AINSPAN, MARK FERRISS, ARUN S. NATARAJAN, BENJAMIN D. PARKER, JEAN-OLIVER PLOUCHART, SCOTT K. REYNOLDS, MIHAI A. SANDULEANU, ALBERTO VALDES GARCIA
  • Patent number: 9191057
    Abstract: A polarimetric transceiver front-end includes two receive paths configured to receive signals from an antenna, each receive path corresponding to a respective polarization. Each front-end includes a variable amplifier and a variable phase shifter; a first transmit path configured to send signals to the antenna, where the transmit path is connected to the variable phase shifter of one of the two receive paths and includes a variable amplifier; and a transmit/receive switch configured to select between the first transmit path and the two receive paths for signals, where the transmit/receive switch includes a quarter-wavelength transmission line that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: November 17, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herschel A. Ainspan, Mark Ferriss, Arun S. Natarajan, Benjamin D. Parker, Jean-Oliver Plouchart, Scott K. Reynolds, Mihai A. Sanduleanu, Alberto Valdes Garcia
  • Patent number: 9020530
    Abstract: A system, method, service and mobile device are disclosed for providing a location of the mobile device. The invention utilizes a mobile phone with a global positioning system (GPS) module which is located in a wireless network. A third party device is able to submit a location query to a mobile telephone service operator (MTSO). This location query includes the mobile phone's telephone number. Using the telephone number, the MTSO determines the base station with which the mobile phone is associated. The location query is then forwarded to the mobile phone via the base station. The mobile phone collects the GPS data from the GPS module and forwards the GPS data to the base station. The base station converts the GPS data to location information and forwards the location information to the third party device via the MTSO.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jonghae Kim, Moon J. Kim, Jean-Oliver Plouchart
  • Patent number: 8773215
    Abstract: There is provided a tank based oscillator. The oscillator includes one or more active devices, one or more passive devices, and a tank circuit decoupled from the active devices using at least one of the one or more passive devices. A coupling ratio between the tank circuit and the one or more active devices is set such that a maximum value of an oscillation amplitude of the tank circuit is limited based upon a breakdown of only the one or more passive devices.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Bodhisatwa Sadhu, Jean-Oliver Plouchart, Scott K. Reynolds, Alexander V. Rylyakov, Jose A. Tierno
  • Publication number: 20140184439
    Abstract: A polarimetric transceiver front-end includes two receive paths configured to receive signals from an antenna, each receive path corresponding to a respective polarization. Each front-end includes a variable amplifier and a variable phase shifter; a first transmit path configured to send signals to the antenna, where the transmit path is connected to the variable phase shifter of one of the two receive paths and includes a variable amplifier; and a transmit/receive switch configured to select between the first transmit path and the two receive paths for signals, where the transmit/receive switch includes a quarter-wavelength transmission line that adds a high impedance to the transmit path when the transmit/receive switch is in a receiving state.
    Type: Application
    Filed: May 29, 2013
    Publication date: July 3, 2014
    Applicant: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Mark Ferriss, Arun S. Natarajan, Benjamin D. Parker, Jean-Oliver Plouchart, Scott K. Reynolds, Mihai A. Sanduleanu, Alberto Valdes Garcia
  • Patent number: 8741713
    Abstract: The present disclosure relates to a secure device having a physical unclonable function and methods of manufacturing such a secure device. The device includes a substrate and at least one high-k/metal gate device formed on the substrate. The at least one high-k/metal gate device represents the physical unclonable function. In some cases, the at least one high-k/metal gate device may be subjected a variability enhancement. In some cases, the secure device may include a measurement circuit for measuring a property of the at least one high-k/metal gate device.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: John Bruley, Vijay Narayanan, Dirk Pfeiffer, Jean-Oliver Plouchart, Peilin Song
  • Publication number: 20140042442
    Abstract: The present disclosure relates to a secure device having a physical unclonable function and methods of manufacturing such a secure device. The device includes a substrate and at least one high-k/metal gate device formed on the substrate. The at least one high-k/metal gate device represents the physical unclonable function. In some cases, the at least one high-k/metal gate device may be subjected a variability enhancement. In some cases, the secure device may include a measurement circuit for measuring a property of the at least one high-k/metal gate device.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: JOHN BRULEY, Vijay Narayanan, Dirk Pfeiffer, Jean-Oliver Plouchart, Peilin Song
  • Publication number: 20130063218
    Abstract: There is provided a tank based oscillator. The oscillator includes one or more active devices, one or more passive devices, and a tank circuit decoupled from the active devices using at least one of the one or more passive devices. A coupling ratio between the tank circuit and the one or more active devices is set such that a maximum value of an oscillation amplitude of the tank circuit is limited based upon a breakdown of only the one or more passive devices.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: BODHISATWA SADHU, JEAN-OLIVER PLOUCHART, SCOTT K. REYNOLDS, ALEXANDER V. RYLYAKOV, JOSE A. TIERNO