Patents by Inventor Jean-Pierre Dueri

Jean-Pierre Dueri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11497603
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 15, 2022
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Patent number: 11491007
    Abstract: A flow diversion device configured in accordance with embodiments of the present technology may include, for example, a housing including openings to channels that intersect at a junction. The flow diversion device may also include, for example, a flow control component disposed at the junction and movable to selectively form pathways for fluid communication based on a position of the flow control component. For example, when the flow control component is in a first position, a first pathway may allow fluid flow causing deployment of the prosthetic heart valve device and, when the flow control component is in a second position, a second pathway may allow fluid flow causing recapture of the prosthetic heart valve device. The flow diversion device may include a handle movable to position the flow control component in the first or second positions thereby selectively controlling fluid flow of the delivery system.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 8, 2022
    Assignee: TWELVE, INC.
    Inventors: Jean-Pierre Dueri, Gavin Kenny, Jason Fox, Matthew McLean
  • Publication number: 20220346948
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: July 5, 2022
    Publication date: November 3, 2022
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20220331099
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20220296856
    Abstract: Delivery devices configured to deliver therapeutic and visualization devices to a surgical site are disclosed. An example delivery device may include a proximally disposed handle; a shaft extending distally from the handle, the shaft including a therapeutic device lumen configured to deliver a working end of a therapeutic device therethrough, a first portion of the shaft being steerable; and a space-making element disposed proximate a distal end portion of the shaft and configured to separate biological tissues to create or expand a working space. At least a portion of the space-making element may be reconfigurable between a retracted configuration and an expanded configuration.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 22, 2022
    Applicant: AtriCure, Inc.
    Inventors: Michael J. Banchieri, Ara M. Stephanian, Jeremy D. Dando, Feng Liu, Gregory W. Fung, Jean-Pierre Dueri
  • Publication number: 20220226112
    Abstract: The devices and methods of this disclosure relate to a heart valve prosthesis that is configured to be implanted within a native heart valve having a smaller perimeter annuli with a generally elliptical shape.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Cahal MCVEIGH, Jean-Pierre DUERI, Yogesh A. DAREKAR, Priya NAIR, Finn O. RINNE, George N. HALLAK, Brenda L. MCINTIRE, Elliot J. HOWARD
  • Publication number: 20220218474
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20220218472
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20220218473
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20220160508
    Abstract: Cardiac valve repair devices and associated systems and methods are disclosed herein. A cardiac valve repair device configured in accordance with embodiments of the present technology can include, for example, a coaptation member configured to be positioned between one or more native leaflets of the cardiac valve to at least partially fill a space between the native leaflets. The cardiac valve repair device can further include one or more fixation mechanisms for securing the coaptation member in position between the leaflets. A cardiac valve repair device configured in accordance with additional embodiments of the present technology can include an atrial member and a ventricular member configured to sandwich one or more the native leaflets therebetween.
    Type: Application
    Filed: November 22, 2021
    Publication date: May 26, 2022
    Inventors: Katherine Miyashiro, Hanson S. Gifford, III, James I. Fann, Ben F. Brian, III, Gaurav Krishnamurthy, Jose Gonzalez, Paul Gunning, Matthew McLean, Neil Zimmerman, Robert O'Grady, Douglas S. Sutton, Jean-Pierre Dueri, Ryan Helmuth, Marine De Gouy
  • Patent number: 11318013
    Abstract: The devices and methods of this disclosure relate to a heart valve prosthesis that is configured to be implanted within a native heart valve having a smaller perimeter annuli with a generally elliptical shape.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: May 3, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Cahal Mcveigh, Jean-Pierre Dueri, Yogesh A. Darekar, Priya Nair, Finn O. Rinne, George N. Hallak, Brenda L. McIntire, Elliot J. Howard
  • Publication number: 20220110747
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: December 19, 2021
    Publication date: April 14, 2022
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Patent number: 11285002
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: March 29, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20220079753
    Abstract: Delivery systems for implanting cardiac valve repair devices are disclosed herein. In some embodiments, a delivery system includes a delivery catheter, a hub shaft extending through the delivery catheter, and a core shaft extending through the hub shaft. The delivery catheter is configured to hold a valve repair device in a compressed configuration. The hub shaft includes a hub configured to releasably engage a first portion of the valve repair device, and the core shaft includes a plug configured to releasably engage a second portion of the valve repair device. When the valve repair device is unsheathed from the delivery catheter, the hub shaft and the core shaft are independently movable to axially elongate/compress the valve repair device. When the valve repair device is properly positioned, the hub can be actuated to release the first portion of the valve repair device, and the plug can be actuated to release the second portion of the valve repair device.
    Type: Application
    Filed: March 5, 2021
    Publication date: March 17, 2022
    Inventors: Neil Zimmerman, Jeffrey Martin, Jean-Pierre Dueri, Erik Thai, Andrew Johnston, Douglas Sutton, Cassandra Orth, Robert O'Grady, Jose Gonzalez, Matthew McLean, Gaurav Krishnamurthy
  • Publication number: 20220079755
    Abstract: Delivery systems for implanting cardiac valve repair devices are disclosed herein. In some embodiments, a delivery system includes a delivery catheter, a hub shaft extending through the delivery catheter, and a core shaft extending through the hub shaft. The delivery catheter is configured to hold a valve repair device in a compressed configuration. The hub shaft includes a hub configured to releasably engage a first portion of the valve repair device, and the core shaft includes a plug configured to releasably engage a second portion of the valve repair device. When the valve repair device is unsheathed from the delivery catheter, the hub shaft and the core shaft are independently movable to axially elongate/compress the valve repair device. When the valve repair device is properly positioned, the hub can be actuated to release the first portion of the valve repair device, and the plug can be actuated to release the second portion of the valve repair device.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Neil Zimmerman, III, Jeffrey Martin, Jean-Pierre Dueri, Erik Thai, Andrew Johnston, Douglas Sutton, Cassandra Orth, Robert O'Grady, Jose Gonzalez, Matthew McLean, Gaurav Krishnamurthy
  • Patent number: 11202704
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: December 21, 2021
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20210322155
    Abstract: The devices and methods of this disclosure relate to a heart valve prosthesis that is configured to be implanted within a native heart valve having a smaller perimeter annuli with a generally elliptical shape.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 21, 2021
    Inventors: Cahal MCVEIGH, Jean-Pierre DUERI, Yogesh A. DAREKAR, Priya NAIR, Finn O. RINNE, George N. HALLAK, Brenda L. MCINTIRE, Elliot J. HOWARD
  • Patent number: 11052226
    Abstract: Steerable medical devices and methods of use. In some embodiments, the steerable medical devices can be steered bi-directionally. In some embodiments the steerable medical devices include a first flexible tubular member and a second flexible tubular member secured together at a location distal to a steerable portion of the steerable medical device.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 6, 2021
    Assignee: Kalila Medical, Inc.
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Tom Saul, Jean-Pierre Dueri, Joseph Creagan Trautman, Christopher T. Cheng, Richard Joseph Renati, Colin Mixter, Marc Bitoun
  • Publication number: 20210196455
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having a first portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a valve support coupled to a second portion of the anchoring member, configured to support a prosthetic valve and having a cross-sectional shape. In some embodiments, the first portion of the anchoring member is mechanically isolated from the valve support such that the cross-sectional shape of the valve support remains sufficiently stable that the prosthetic valve remains competent when the anchoring member is deformed in the non-circular shape.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Patent number: 10945835
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having a first portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a valve support coupled to a second portion of the anchoring member, configured to support a prosthetic valve and having a cross-sectional shape. In some embodiments, the first portion of the anchoring member is mechanically isolated from the valve support such that the cross-sectional shape of the valve support remains sufficiently stable that the prosthetic valve remains competent when the anchoring member is deformed in the non-circular shape.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 16, 2021
    Assignee: TWELVE, INC.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger