Patents by Inventor Jean-Pierre Henri Rene Lereboullet

Jean-Pierre Henri Rene Lereboullet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240009887
    Abstract: A process (10) of forming an internal mold (IM) and using the internal mold (IM) to press-mold an internal passage or an internal cavity within a ceramic body includes making or obtaining first and second flexible mold halves (102,104); molding a positive internal mold (IM) of a meltable or sublimable or otherwise heat-removeable material; pressing a volume of binder-coated ceramic powder with the positive internal mold (IM) inside the volume of powder to form a pressed body; heating the pressed body to remove the positive internal mold from the pressed body; and sintering the pressed body to form a monolithic ceramic body having an internal passage or an internal cavity.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 11, 2024
    Inventors: Didier Claude Jacob, Jean-Pierre Henri René Lereboullet, James Scott Sutherland, Sophie Annie Vallon, Frédéric Camiel Verveynne
  • Publication number: 20240010542
    Abstract: Disclosed are embodiments of a glass article of a vehicle interior system. The glass article includes a frame having a curved support surface. The frame is configured to hold at least one magnet. The glass article also includes a glass sheet having a first major surface and a second major surface opposite to the first major surface. The glass sheet is arranged with the second major surface facing toward the curved support surface. The glass article further includes a metal strip disposed on the glass sheet. The metal strip and the at least one magnet create a magnetic connection sufficient to hold the glass sheet in conformity with the curved support surface.
    Type: Application
    Filed: November 12, 2021
    Publication date: January 11, 2024
    Inventors: Mickaël Berrebi, Laurent Joubaud, Khaled Layouni, Jean-Pierre Henri René Lereboullet, Elias Merhy, Ronan Tanguy
  • Publication number: 20190263706
    Abstract: A mold has a sealing surface bearing a sealing profile. A plenum has a sealing surface bearing a sealing profile. The mold and plenum together form an apparatus for reforming a sheet material. In the closed position of the apparatus, the sealing profile of the mold is in opposing relation to the sealing profile of the plenum and the sealing profiles of the mold and plenum together define a profiled sealing gap. When the sheet material is wedged into the profiled sealing gap, a direct seal will be formed between the sheet material and each of the mold and plenum, resulting in two forming areas within the apparatus.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Frédéric Atkins-Barratt, Jean-Luc Dabouineau, Jean-Pierre Henri René Lereboullet
  • Patent number: 10308542
    Abstract: A mold has a sealing surface bearing a sealing profile. A plenum has a sealing surface bearing a sealing profile. The mold and plenum together form an apparatus for reforming a sheet material. In the closed position of the apparatus, the sealing profile of the mold is in opposing relation to the sealing profile of the plenum and the sealing profiles of the mold and plenum together define a profiled sealing gap. When the sheet material is wedged into the profiled sealing gap, a direct seal will be formed between the sheet material and each of the mold and plenum, resulting in two forming areas within the apparatus.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: June 4, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Frédéric Atkins-Barratt, Jean-Luc Dabouineau, Jean-Pierre Henri René Lereboullet
  • Publication number: 20190070748
    Abstract: A printing material and process for producing dense glass-ceramic articles by additive manufacturing are provided. The printing material includes a glass fit that densifies to a degree that closely approximates the theoretical density before appreciable crystallization occurs. Densification without interference from a crystalline phase enables greater degrees of densification. Further heating of the sintered printing material induces crystallization to form glass-ceramic articles having a density approaching the theoretical density. The printing material and process enable production of high density glass-ceramic articles at modest process temperatures.
    Type: Application
    Filed: August 21, 2018
    Publication date: March 7, 2019
    Inventors: Marie Jacqueline Monique Comte, Jean-Pierre Henri René Lereboullet
  • Patent number: 9896367
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt from a molten core glass and at least one molten cladding glass. The multi-layer glass melt has a width Wm, a melt thickness Tm and a core to cladding thickness ratio Tc:Tcl. The multi-layer glass melt is directed onto the surface of a molten metal bath contained in a float tank. The width Wm of the multi-layer glass melt is less than the width Wf of the float tank prior to the multi-layer glass melt entering the float tank. The multi-layer glass melt flows over the surface of the molten metal bath such that the width Wm of the multi-layer glass melt increases, the melt thickness Tm decreases, and the core to cladding thickness ratio Tc:Tcl remains constant as the multi-layer glass melt solidifies into a laminated glass sheet.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 20, 2018
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allen Mark Fredholm, Laurent Joubaud, Jean-Pierre Henri René Lereboullet, Xavier Tellier
  • Publication number: 20180036945
    Abstract: Additive manufacturing processes for making transparent three-dimensional parts from inorganic material powders involve selective use of vacuum to remove or avoid trapped bubbles in the parts.
    Type: Application
    Filed: February 23, 2016
    Publication date: February 8, 2018
    Inventors: Jean-Pierre Henri René Lereboullet, Michel Prassas
  • Publication number: 20160376184
    Abstract: A mold has a sealing surface bearing a sealing profile. A plenum has a sealing surface bearing a sealing profile. The mold and plenum together form an apparatus for reforming a sheet material. In the closed position of the apparatus, the sealing profile of the mold is in opposing relation to the sealing profile of the plenum and the sealing profiles of the mold and plenum together define a profiled sealing gap. When the sheet material is wedged into the profiled sealing gap, a direct seal will be formed between the sheet material and each of the mold and plenum, resulting in two forming areas within the apparatus.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 29, 2016
    Inventors: Frédéric Atkins-Barratt, Jean-Luc Dabouineau, Jean-Pierre Henri René Lereboullet
  • Publication number: 20160368805
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt from a molten core glass and at least one molten cladding glass. The multi-layer glass melt has a width Wm, a melt thickness Tm and a core to cladding thickness ratio Tc:Tcl. The multi-layer glass melt is directed onto the surface of a molten metal bath contained in a float tank. The width Wm of the multi-layer glass melt is less than the width Wf of the float tank prior to the multi-layer glass melt entering the float tank. The multi-layer glass melt flows over the surface of the molten metal bath such that the width Wm of the multi-layer glass melt increases, the melt thickness Tm decreases, and the core to cladding thickness ratio Tc:Tclremains constant as the multi-layer glass melt solidifies into a laminated glass sheet.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allen Mark Fredholm, Laurent Joubaud, Jean-Pierre Henri René Lereboullet, Xavier Tellier
  • Patent number: 9458044
    Abstract: According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt (300) from a molten core glass (106) and at least one molten cladding glass (126). The multi-layer glass melt (300) has a width Wm, a melt thickness Tm and a core to cladding thickness ratio TC:TCl. The multi-layer glass melt (300) is directed onto the surface of a molten metal bath (162) contained in a float tank (160). The width Wm of the multi-layer glass melt (300) is less than the width Wf of the float tank (160) prior to the multi-layer glass melt (300) entering the float tank (160). The multilayer glass melt (300) flows over the surface of the molten metal bath (162) such that the width Wm of the multi-layer glass melt (300) increases, the melt thickness Tm decreases, and the core to cladding thickness ratio TC:TCl remains constant as the multi-layer glass melt (300) solidifies into a laminated glass sheet. The invention also relates to the associated apparatus.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 4, 2016
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Olivier Fournel, Allan Mark Fredholm, Laurent Joubaud, Jean-Pierre Henri René Lereboullet, Xavier Tellier
  • Patent number: 8573005
    Abstract: An apparatus for mass production of 3D articles from 2D glass-containing sheets includes a heating section having a heating station that includes a heating chamber adapted to receive a 2D glass-containing sheet, a pneumatic bearing system proximate to the heating chamber for suspending the 2D glass-containing sheet inside the heating chamber, and a heater system proximate to the heating chamber for supplying heat to the heating chamber. A forming section downstream of the heating section has a forming station that includes a mold system adapted to shape a heated 2D glass-containing sheet into a 3D article. A cooling section downstream of the forming section has a cooling chamber adapted to controllably cool off one or more 3D articles. A method of mass producing 3D articles from 2D glass-containing sheets involves use of the apparatus.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Paul Delautre, Frederic Henri Florent, Allan Mark Fredholm, Patrick Jean Pierre Herve, Jean-Pierre Henri Rene Lereboullet, Stephane Poissy
  • Publication number: 20120216573
    Abstract: An apparatus for mass production of 3D articles from 2D glass-containing sheets includes a heating section having a heating station that includes a heating chamber adapted to receive a 2D glass-containing sheet, a pneumatic bearing system proximate to the heating chamber for suspending the 2D glass-containing sheet inside the heating chamber, and a heater system proximate to the heating chamber for supplying heat to the heating chamber. A forming section downstream of the heating section has a forming station that includes a mold system adapted to shape a heated 2D glass-containing sheet into a 3D article. A cooling section downstream of the forming section has a cooling chamber adapted to controllably cool off one or more 3D articles. A method of mass producing 3D articles from 2D glass-containing sheets involves use of the apparatus.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Inventors: Thierry Luc Alain Dannoux, Paul Delautre, Frederic Henri Florent, Allan Mark Fredholm, Patrick Jean Pierre Herve, Jean-Pierre Henri Rene Lereboullet, Stephane Poissy
  • Publication number: 20120145277
    Abstract: Embodiments are directed a method for reducing and/or controlling compression of stacked layers in a micro fluidic device, wherein the method comprises stacking at least two layers wherein at least one of the stacked layers comprises a microstructure. The microstructure comprises a fluid passage, a plurality of walls configured to define a spacing A1 between layers and a plurality of uniformly spaced pneumatic struts wherein the pneumatic struts define sealed containers comprising entrapped gas. The method further comprises the step of sintering the stacked layers wherein the sintering pressurizes the entrapped gas inside the pneumatic struts to oppose compression of the walls and compression of the spacing A1 between stacked layers.
    Type: Application
    Filed: August 23, 2010
    Publication date: June 14, 2012
    Inventors: Jean Francois Bruneaux, Mark Stephen Friske, Jean-Pierre Henri Rene Lereboullet, Olivier Lobet, Yann Patrick Marie Nedelec
  • Patent number: 8105557
    Abstract: A microreactor assembly [100] is provided comprising a fluidic interconnect backbone [10] and plurality of fluidic microstructures. Interconnect input/output ports [12] of the fluidic interconnect backbone [10] are interfaced with microchannel input/output ports [14] of the fluidic microstructures at a plurality of non-polymeric interconnect seals [50]. Interconnect microchannels [15] are defined entirely by the fluidic interconnect backbone [10] and extend between the non-polymeric interconnect seals [50] without interruption by additional sealed interfaces. At least one of the fluidic microstructures [20, 30, 40] may comprise a mixing microstructure formed by a molding process. Another of the fluidic microstructures [20, 30, 40] may comprise an extruded reactor body. Still another fluidic microstructure [20, 30, 40] may comprise a quench-flow or hydrolysis microreactor formed by a hot-pressing method.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: January 31, 2012
    Assignee: Corning Incorporated
    Inventors: Jean-Pierre Henri Rene Lereboullet, Olivier Lobet, Yann P M Nedelec, Ronan Tanguy
  • Publication number: 20090191102
    Abstract: A microreactor assembly [100] is provided comprising a fluidic interconnect backbone [10] and plurality of fluidic microstructures. Interconnect input/output ports [12] of the fluidic interconnect backbone [10] are interfaced with microchannel input/output ports [14] of the fluidic microstructures at a plurality of non-polymeric interconnect seals [50]. Interconnect microchannels [15] are defined entirely by the fluidic interconnect backbone [10] and extend between the non-polymeric interconnect seals [50] without interruption by additional sealed interfaces. At least one of the fluidic microstractures [20, 30, 40] may comprise a mixing microstructure formed by a molding process. Another of the fluidic microstructures [20, 30, 40] may comprise an extruded reactor body. Still another fluidic microstructure [20, 30, 40] may comprise a quench-flow or hydrolysis microreactor formed by a hot-pressing method.
    Type: Application
    Filed: January 28, 2009
    Publication date: July 30, 2009
    Inventors: Jean-Pierre Henri Rene Lereboullet, Olivier Lobet, Yann P. M. Nedelec, Ronan Tanguy
  • Patent number: 7070728
    Abstract: A method for plugging a subset of cells of a honeycomb structure having a plurality of open-end cells extending therethrough including providing at least one cylindrically-shaped first roller including an engagement surface having a plurality of outwardly-extending teeth spaced along a length and about a circumference of the at least one first roller, wherein the teeth are spaced so as to engage a first subset of a total number of cells exposed on a first end of the honeycomb structure. The method also includes rolling the engagement surface of the at least one first roller across the first end of the honeycomb structure with the teeth extending into the first subset of cells, thereby deforming the first end of the honeycomb structure and plugging a second subset of the total number of cells substantially different from the first subset of cells.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: July 4, 2006
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Jean-Pierre Henri René Lereboullet, Grégory Emmanuel Guillaume Rossignol, Claude Jacques Julien Vanotti