Patents by Inventor Jeffrey Drue David

Jeffrey Drue David has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9482610
    Abstract: A method of controlling processing of a substrate includes measuring a spectrum reflected from the substrate, for each partition of a plurality of partitions of the measured spectrum, computing a partition value based on the measured spectrum within the partition to generate a plurality of partition values, for each reference spectrum signature of a plurality of reference spectrum signatures, determining a membership function for each partition, for each partition, computing a membership value based on the membership function for the partition and the partition value for the partition to generate a plurality of groups of membership values with each group of the plurality of groups associated with a reference spectrum signature, selecting a best matching reference spectrum signature from the plurality of reference spectra signatures based on the plurality of groups of membership values, and determining a characterizing value associated with the best matching reference spectrum signature.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: November 1, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kiran Lall Shrestha, Boguslaw A. Swedek, Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20160284615
    Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being a measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of an outer layer over the at least one layer, after deposition of the outer layer over the at least one layer and during polishing of the outer layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
  • Patent number: 9372116
    Abstract: A method of generating reference spectra includes polishing a first substrate in a polishing apparatus, measuring a sequence of spectra from the first substrate during polishing with an in-situ optical monitoring system, for each spectrum in the sequence of spectra, determining a best matching reference spectrum from a first plurality of first reference spectra to generate a sequence of reference spectra, calculating a value of a metric of fit of the sequence of spectra to the sequence of reference spectra, comparing the value of the metric of fit to a threshold value and determining whether to generate a second library based on the comparison, and if the second library is determined to be generated, storing the sequence of spectra as a second plurality of reference spectra.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: June 21, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Jun Qian
  • Patent number: 9362186
    Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being an eddy current measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of a conductive layer over the at least one layer, after deposition of the conductive layer over the at least one layer and during polishing of the conductive layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ eddy current monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: June 7, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
  • Patent number: 9352440
    Abstract: A method of controlling polishing includes polishing a substrate having a second layer overlying a first layer, detecting exposure of the first layer with an in-situ monitoring system, receiving an identification of a selected spectral feature and a characteristic of the selected spectral feature to monitor during polishing, measuring a sequence of spectra of light from the substrate while the substrate is being polished, determining a first value for the characteristic of the feature at the time that the first in-situ monitoring technique detects exposure of the first layer, adding an offset to the first value to generate a second value, and monitoring the characteristic of the feature and halting polishing when the characteristic of the feature is determined to reach the second value.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: May 31, 2016
    Assignee: Applied Materials, Inc.
    Inventor: Jeffrey Drue David
  • Publication number: 20160148850
    Abstract: Techniques for measuring and/or compensating for process variations in a semiconductor manufacturing processes. Machine learning algorithms are used on extensive sets of input data, including upstream data, to organize and pre-process the input data, and to correlate the input data to specific features of interest. The correlations can then be used to make process adjustments. The techniques may be applied to any feature or step of the semiconductor manufacturing process, such as overlay, critical dimension, and yield prediction.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 26, 2016
    Inventor: Jeffrey Drue DAVID
  • Patent number: 9346146
    Abstract: A computer-implemented method includes receiving a sequence of current spectra of reflected light from a substrate; comparing each current spectrum from the sequence of current spectra to a plurality of reference spectra from a reference spectra library to generate a sequence of best-match reference spectra; determining a goodness of fit for the sequence of best-match reference spectra; and determining at least one of whether to adjust a polishing rate or an adjustment for the polishing rate, based on the goodness of fit.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 24, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu, Harry Q. Lee, Boguslaw A. Swedek
  • Publication number: 20160129550
    Abstract: A method of controlling polishing includes polishing a substrate and receiving an identification of a selected spectral feature, a wavelength range having a width, and a characteristic of the selected spectral feature to monitor during polishing. A sequence of spectra of light from the substrate is measured while the substrate is being polished. A sequence of values of the characteristic of the selected spectral feature is generated from the sequence of spectra. For at least some spectra from the sequence of spectra, a modified wavelength range is generated based on a position of the spectral feature within a previous wavelength range used for a previous spectrum in the sequence of spectra, the modified wavelength range is searched for the selected spectral feature, and a value of a characteristic of the selected spectral feature is determined.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 12, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20160101497
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D'Ambra, Jagan Rangarajan
  • Patent number: 9289875
    Abstract: During polishing of a substrate at a first platen and prior to a first time, a first sequence of values is obtained for a first zone of the first substrate and a second sequence of values is obtained for a different second zone of the substrate with an in-situ monitoring system. A first function is fit to a portion of the first sequence of values obtained prior to the first time, and a second function is fit to a portion of the second sequence of values obtained prior to the second time. At least one polishing parameter is adjusted based on the first fitted function and the second fitted function so as to reduce an expected difference between the zones. A second substrate is polished on the first platen using an adjusted polishing parameter calculated based on the first fitted function and the second fitted function.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 22, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Jun Qian, Harry Q. Lee
  • Patent number: 9283653
    Abstract: A method of controlling polishing includes polishing a substrate and receiving an identification of a selected spectral feature, a wavelength range having a width, and a characteristic of the selected spectral feature to monitor during polishing. A sequence of spectra of light from the substrate is measured while the substrate is being polished. A sequence of values of the characteristic of the selected spectral feature is generated from the sequence of spectra. For at least some spectra from the sequence of spectra, a modified wavelength range is generated based on a position of the spectral feature within a previous wavelength range used for a previous spectrum in the sequence of spectra, the modified wavelength range is searched for the selected spectral feature, and a value of a characteristic of the selected spectral feature is determined.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: March 15, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Harry Q. Lee
  • Publication number: 20160018815
    Abstract: A method of controlling polishing includes storing a base spectrum, the base spectrum being a spectrum of light reflected from a substrate after deposition of a deposited dielectric layers overlying a metallic layer or semiconductor wafer and before deposition of a non-metallic layer over the plurality of deposited dielectric layer. After deposition of the non-metallic layer and during polishing of the non-metallic layer on the substrate, measurements of a sequence of raw spectra of light reflected the substrate during polishing are received from an in-situ optical monitoring system. Each raw spectrum is normalized to generate a sequence of normalized spectra using the raw spectrum and the base spectrum. At least one of a polishing endpoint or an adjustment for a polishing rate is determined based on at least one normalized predetermined spectrum from the sequence of normalized spectra.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 21, 2016
    Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
  • Publication number: 20160020157
    Abstract: A method of controlling polishing includes storing a base measurement, the base measurement being an eddy current measurement of a substrate after deposition of at least one layer overlying a semiconductor wafer and before deposition of a conductive layer over the at least one layer, after deposition of the conductive layer over the at least one layer and during polishing of the conductive layer on substrate, receiving a sequence of raw measurements of the substrate from an in-situ eddy current monitoring system, normalizing each raw measurement in the sequence of raw measurement to generate a sequence of normalized measurements using the raw measurement and the base measurement, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on at least the sequence of normalized measurements.
    Type: Application
    Filed: July 15, 2015
    Publication date: January 21, 2016
    Inventors: Tomohiko Kitajima, Jeffrey Drue David, Jun Qian, Taketo Sekine, Garlen C. Leung, Sidney P. Huey
  • Patent number: 9233450
    Abstract: A method of controlling polishing includes polishing a metal layer of a substrate. The metal layer overlies an underlying layer structure. During polishing of the metal layer, a light beam is directed onto the first substrate. The metal layer is sufficiently thin that a portion of the light beam reflects from an exposed surface of the metal layer and a portion of the light beam passes through the metal layer and reflects from the underlying layer structure to generate a reflected light beam. The reflected light beam is monitored during polishing and a sequence of measured spectra is generated from the reflected light beam. At least one of a polishing endpoint or an adjustment for a polishing rate is determined from the sequence of measured spectra.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: January 12, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Dominic J. Benvegnu
  • Patent number: 9227293
    Abstract: A polishing apparatus includes a plurality of stations supported on a platform, the plurality of stations including at least two polishing stations and a transfer station, each polishing station including a platen to support a polishing pad, a plurality of carrier heads suspended from and movable along a track such that each polishing station is selectively positionable at the stations, and a controller configured to control motion of the carrier heads along the track such that during polishing at each polishing station only a single carrier head is positioned in the polishing station.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 5, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Doyle E. Bennett, Thomas H. Osterheld, Benjamin Cherian, Dominic J. Benvegnu, Harry Q. Lee, Allen L. D'Ambra, Jagan Rangarajan
  • Patent number: 9221147
    Abstract: A method of controlling polishing includes polishing a substrate, monitoring the substrate during polishing with an in-situ spectrographic monitoring system to generate a sequence of measured spectra, selecting less than all of the measured spectra to generate a sequence of selected spectra, generating a sequence of values from the sequence of selected spectra, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the sequence of values.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: December 29, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jun Qian, Sivakumar Dhandapani, Benjamin Cherian, Thomas H. Osterheld, Jeffrey Drue David, Gregory E. Menk, Boguslaw A. Swedek, Doyle E. Bennett
  • Publication number: 20150364390
    Abstract: Methods and apparatus for spectrum-based endpointing. An endpointing method includes selecting a reference spectrum. The reference spectrum is a spectrum of white light reflected from a film of interest on a first substrate and has a thickness greater than a target thickness. The reference spectrum is empirically selected for particular spectrum-based endpoint determination logic so that the target thickness is achieved when endpoint is called by applying the particular spectrum-based endpoint logic. The method includes obtaining a current spectrum. The current spectrum is a spectrum of white light reflected from a film of interest on a second substrate when the film of interest is being subjected to a polishing step and has a current thickness that is greater than the target thickness. The method includes determining, for the second substrate, when an endpoint of the polishing step has been achieved. The determining is based on the reference and current spectra.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 17, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dominic J. Benvegnu, Jeffrey Drue David, Boguslaw A. Swedek
  • Publication number: 20150314415
    Abstract: A method of controlling polishing includes polishing a substrate having a second layer overlying a first layer, detecting exposure of the first layer with an in-situ monitoring system, receiving an identification of a selected spectral feature and a characteristic of the selected spectral feature to monitor during polishing, measuring a sequence of spectra of light from the substrate while the substrate is being polished, determining a first value for the characteristic of the feature at the time that the first in-situ monitoring technique detects exposure of the first layer, adding an offset to the first value to generate a second value, and monitoring the characteristic of the feature and halting polishing when the characteristic of the feature is determined to reach the second value.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Inventor: Jeffrey Drue David
  • Patent number: 9168630
    Abstract: A method of controlling polishing includes receiving user input through a graphical user interface selecting a function, the function including at least one parameter that can be varied, polishing a substrate, monitoring a substrate during polishing with an in-situ monitoring system, generating a sequence of values from measurements from the in-situ monitoring system, fitting the function to the sequence of values, the fitting including determining a value of the at least one parameter that provides a best fit of the function to the sequence of values, determining a projected time at which the function equals a target value, and determining at least one of a polishing endpoint or an adjustment for a polishing rate based on the projected time.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 27, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Harry Q. Lee, Jeffrey Drue David, Dominic J. Benvegnu, Boguslaw A. Swedek
  • Publication number: 20150298284
    Abstract: A polishing apparatus includes a platen having a first surface to support a polishing pad and a second surface opposite to the first surface, a carrier head to hold a substrate against the polishing pad, and a control assembly adjacent the second surface of the platen and opposite to the carrier head. The platen comprises a platen material having an adjustable rigidity. The control assembly is configured to control the rigidity of the platen material.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 22, 2015
    Inventor: Jeffrey Drue David