Patents by Inventor Jeffrey L. Arndt
Jeffrey L. Arndt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240387065Abstract: A method for detecting a leak in a cladding tube in a nuclear reactor is described. The method is well-suited for use in a reactor having a plurality of cladding tubes housed in a plurality of linearly arranged channels for flowing coolant past the cladding tubes. The method includes monitoring the channels for the occurrence of an increase in radiation above a selected base line indicative of the presence of at least one fission product in the coolant in at least one of the plurality of channels, and monitoring the channels for the occurrence of time dependent changes in the strength of radiation in the coolant above the base line along the length of the at least one of the plurality of channels. The leak location is calculated by triangulating the radiation readings from a fixed linear array of detectors positioned adjacent to the channels to determine the location of the strongest radiation reading and the location along the length of the channel where the increase in radiation occurred.Type: ApplicationFiled: July 22, 2024Publication date: November 21, 2024Applicant: Westinghouse Electric Company LLCInventors: Michael D. Heibel, Jeffrey L. Arndt
-
Patent number: 12131829Abstract: A system for detecting a leak in a cladding tube in a nuclear reactor that has a plurality of cladding tubes housed in a plurality of horizontally arranged channels. A plurality of tubes are positioned adjacent to the channels. A plurality of solid state radiation detectors are in each of the tubes. The detectors are spaced from each other along the length of each tube. The detectors can detect the presence of radiation from a selected fission product within a channel. A processor calculates a leak location by receiving signals above a base line level from the detectors, determining differences in signal strength from the detectors over a period of time, and identifying location of the detector emitting the strongest signal.Type: GrantFiled: October 11, 2021Date of Patent: October 29, 2024Assignee: Westinghouse Electric Company LLCInventors: Michael D. Heibel, Jeffrey L. Arndt
-
Publication number: 20240266085Abstract: A measurement device for determining a power level of a nuclear reactor core is provided, the measurement device comprising an in-vessel detector assembly. The in-vessel detector assembly comprises a rotatable housing defining a cavity therein and a detector element positioned in a first angular portion of the cavity of the housing. A control drum for a nuclear reactor core and a system for monitoring a power level of a nuclear reactor are also provided.Type: ApplicationFiled: February 6, 2023Publication date: August 8, 2024Applicant: Westinghouse Electric Company LLCInventors: Jeffrey L. ARNDT, Jorge V. CARVAJAL, Thomas TWEEDLE
-
Patent number: 12046378Abstract: A sensor system for a fuel rod including a fuel pellet stack, the sensor system including a wireless interrogator disposed outside the fuel rod and a passive sensor component disposed within the fuel rod. The passive sensor component includes a receiver structured to receive an interrogation signal and output an excitation signal in response to receiving the interrogation signal, a reference transmitter structured to output a reference signal to the reference receiver in response to the excitation signal, a sensing transmitter structured to output a sensing signal to the sensing receiver in response to the excitation signal, and a core at least partially disposed within the sensing transmitter and coupled to move in conjunction with expansion or contraction of the fuel pellet stack, to move based on changes in pressure within the fuel rod, or to change temperature based on temperature changes within the fuel rod.Type: GrantFiled: August 25, 2021Date of Patent: July 23, 2024Assignee: Westinghouse Electric Company LLCInventors: Jeffrey L. Arndt, Jorge V. Carvajal, Shawn C. Stafford
-
Publication number: 20240125950Abstract: An in-core detector configured to measure a power distribution in a nuclear reactor is disclosed herein. The in-core detector includes a housing configured to be placed within a predetermined location of the nuclear reactor and a plurality of a gamma detectors. Each gamma detector of the plurality of gamma detectors includes a Schottky diode including an active semiconductor region and a Schottky contact, an Ohmic contact, a photoelectron source material configured to transfer electrons to the active region upon contact with gamma radiation, and a first and second lead. The plurality of gamma detectors are positioned within the housing such that each gamma detector of the plurality of gamma detectors is radially offset relative to an adjacent gamma detector of the plurality of gamma detectors, such that the first and second leads of each gamma detector are offset relative to the first and second leads of the adjacent gamma detector.Type: ApplicationFiled: October 11, 2023Publication date: April 18, 2024Applicant: Westinghouse Electric Company LLCInventors: Michael D. HEIBEL, Jeffrey L. Arndt
-
Publication number: 20240071637Abstract: A detection apparatus includes a resonant electrical circuit supported within an interior of a nuclear fuel rod generates a response pulse in response to an excitation pulse and transmits the response pulse through a cladding of the fuel rod to another location within a reactor in which the fuel rod is housed and without any breach in the cladding. A characteristic of the response pulse is indicative of a condition of the fuel rod. The detection apparatus also includes a transmitter positioned outside the cladding, in the reactor, in the vicinity of the fuel rod and configured to generate the excitation pulse and transmit the excitation pulse through the cladding to the resonant electrical circuit. A receiver is supported within the reactor outside of the cladding and, in response to the response pulse, communicates a signal to an electronic processing apparatus outside of the reactor.Type: ApplicationFiled: October 5, 2023Publication date: February 29, 2024Applicant: Westinghouse Electric Company LLCInventors: Jorge V. CARVAJAL, Jeffrey L. ARNDT, Shawn C. STAFFORD, Melissa M. HEAGY, John R. ABEL, II, Emre TATLI
-
Patent number: 11817221Abstract: A nuclear system. The nuclear system includes a fuel rod for use in a nuclear reactor. The fuel rod includes a cladding comprising an interior region, unspent fuel pellets housed in the interior region of the cladding, and a resonant electrical circuit supported within the interior region of the cladding. The resonant electrical circuit is configured to receive an excitation pulse through the cladding, and responsive to the received excitation pulse, generate a response pulse in the form of a magnetic field signal that is structured to travel wirelessly from the interior region and through the cladding. The nuclear system also includes a receiver positioned outside of the cladding and within the nuclear reactor. The receiver is configured to receive the response pulse and generate an output based on the received response pulse.Type: GrantFiled: October 19, 2020Date of Patent: November 14, 2023Assignee: Westinghouse Electric Company LLCInventors: Jorge V. Carvajal, Jeffrey L. Arndt, Shawn C. Stafford, Melissa M. Heagy, John R. Abel, II, Emre Tatli
-
Patent number: 11728057Abstract: A system that provides a direct indication of peak fuel rod centerline temperature and peak fuel rod clad temperature than conventionally inferred from the power distribution by directly and continuously measuring the fuel temperatures of the fuel pellets in one or more of the hottest fuel elements in the core. The peak fuel rod clad temperature is then obtained from the maximum measured peak fuel rod centerline temperature in combination with the maximum coolant core exit temperature and the minimum coolant flow rate.Type: GrantFiled: August 16, 2021Date of Patent: August 15, 2023Assignee: Westinghouse Electric Company LLCInventors: Michael D. Heibel, Jorge V. Carvajal, Shawn C. Stafford, Jeffrey L. Arndt
-
Publication number: 20230154635Abstract: A non-invasive eddy current flow meter embedded into a coolant channel for measuring the coolant flow velocity of liquid metal coolant in a nuclear reactor. The eddy current flow meter measures the coolant flow velocity in pool-type nuclear reactors and narrow coolant channels without creating bottlenecks that impede the coolant flow within the nuclear reactors.Type: ApplicationFiled: November 15, 2021Publication date: May 18, 2023Applicant: Westinghouse Electric Company LLCInventors: Jeffrey L. ARNDT, Paolo FERRONI, Cory A. STANSBURY
-
Patent number: 11424046Abstract: An enclosure for non-organic electronic components is provided which includes an inner cavity for housing non-organic electronic components and a neutron shielding barrier surrounding the inner cavity and the electronic components housed within the cavity. The barrier is formed from a neutron reflecting material in solid or powdered form and a neutron absorbing material in solid or powdered form. An optional structural support is provided in certain aspects of the enclosure design.Type: GrantFiled: December 5, 2018Date of Patent: August 23, 2022Assignee: Westinghouse Electric Company LLCInventors: Jeffrey L. Arndt, Jorge V. Carvajal, Shawn C. Stafford, Melissa M. Heagy, John R. Abel, II, Robert W. Flammang, Michael R. Ickes
-
Patent number: 11335469Abstract: A dry cask storage system for spent nuclear fuel includes a detection apparatus having a resonant electrical circuit, with resonant electrical circuit being situated within an interior region of a metallic vessel wherein the SNF is situated. The detection apparatus includes a transmitter that generates an excitation pulse that causes the resonant circuit to resonate and to generate a response pulse. The resonant circuit includes an inductor that is formed with a core whose magnetic permeability varies with temperature such that the frequency of the resonant circuit varies as a function of temperature. The response pulse is then used to determine the temperature within the interior of the vessel where the SNF is situated. Pressure detection is also provided.Type: GrantFiled: June 21, 2019Date of Patent: May 17, 2022Assignee: Westinghouse Electric Company LLCInventors: Jorge V. Carvajal, Justin P. Schmidt, Jeffrey L. Arndt, Paul M. Sirianni, Shawn C. Stafford, Kathryn E. Metzger
-
Publication number: 20220084705Abstract: A method that provides a more direct indication of peak fuel rod centerline temperature and peak fuel rod clad temperature than conventionally inferred from the power distribution by directly and continuously measuring the fuel temperatures of the fuel pellets in one or more of the hottest fuel elements in the core. The peak fuel rod clad temperature is then obtained from the maximum measured peak fuel rod centerline temperature in combination with the maximum coolant core exit temperature and the minimum coolant flow rate.Type: ApplicationFiled: August 16, 2021Publication date: March 17, 2022Applicant: Westinghouse Electric Company LLCInventors: Michael D. HEIBEL, Jorge V. CARVAJAL, Shawn C. STAFFORD, Jeffrey L. ARNDT
-
Publication number: 20220084703Abstract: A method for detecting a leak in a cladding tube in a nuclear reactor is described. The method is well-suited for use in a reactor having a plurality of cladding tubes housed in a plurality of linearly arranged channels for flowing coolant past the cladding tubes. The method includes monitoring the channels for the occurrence of an increase in radiation above a selected base line indicative of the presence of at least one fission product in the coolant in at least one of the plurality of channels, and monitoring the channels for the occurrence of time dependent changes in the strength of radiation in the coolant above the base line along the length of the at least one of the plurality of channels. The leak location is calculated by triangulating the radiation readings from a fixed linear array of detectors positioned adjacent to the channels to determine the location of the strongest radiation reading and the location along the length of the channel where the increase in radiation occurred.Type: ApplicationFiled: October 11, 2021Publication date: March 17, 2022Applicant: Westinghouse Electric Company LLCInventors: Michael D. HEIBEL, Jeffrey L. ARNDT
-
Publication number: 20220044831Abstract: A sensor system for a fuel rod including a fuel pellet stack, the sensor system including a wireless interrogator disposed outside the fuel rod and a passive sensor component disposed within the fuel rod. The passive sensor component includes a receiver structured to receive an interrogation signal and output an excitation signal in response to receiving the interrogation signal, a reference transmitter structured to output a reference signal to the reference receiver in response to the excitation signal, a sensing transmitter structured to output a sensing signal to the sensing receiver in response to the excitation signal, and a core at least partially disposed within the sensing transmitter and coupled to move in conjunction with expansion or contraction of the fuel pellet stack, to move based on changes in pressure within the fuel rod, or to change temperature based on temperature changes within the fuel rod.Type: ApplicationFiled: August 25, 2021Publication date: February 10, 2022Applicant: Westinghouse Electric Company LLCInventors: Jeffrey L. ARNDT, Jorge V. CARVAJAL, Shawn C. STAFFORD
-
Patent number: 11170903Abstract: A method for detecting a leak in a cladding tube in a nuclear reactor is described. The method is well-suited for use in a reactor having a plurality of cladding tubes housed in a plurality of linearly arranged channels for flowing coolant past the cladding tubes. The method includes monitoring the channels for the occurrence of an increase in radiation above a selected base line indicative of the presence of at least one fission product in the coolant in at least one of the plurality of channels, and monitoring the channels for the occurrence of time dependent changes in the strength of radiation in the coolant above the base line along the length of the at least one of the plurality of channels. The leak location is calculated by triangulating the radiation readings from a fixed linear array of detectors positioned adjacent to the channels to determine the location of the strongest radiation reading and the location along the length of the channel where the increase in radiation occurred.Type: GrantFiled: June 12, 2019Date of Patent: November 9, 2021Assignee: Westinghouse Electric Company LLCInventors: Michael D. Heibel, Jeffrey L. Arndt
-
Patent number: 11127507Abstract: A sensor system for a fuel rod including a fuel pellet stack, the sensor system including a wireless interrogator disposed outside the fuel rod and a passive sensor component disposed within the fuel rod. The passive sensor component includes a receiver structured to receive an interrogation signal and output an excitation signal in response to receiving the interrogation signal, a reference transmitter structured to output a reference signal to the reference receiver in response to the excitation signal, a sensing transmitter structured to output a sensing signal to the sensing receiver in response to the excitation signal, and a core at least partially disposed within the sensing transmitter and coupled to move in conjunction with expansion or contraction of the fuel pellet stack, to move based on changes in pressure within the fuel rod, or to change temperature based on temperature changes within the fuel rod.Type: GrantFiled: September 9, 2019Date of Patent: September 21, 2021Assignee: Westinghouse Electric Company LLCInventors: Jeffrey L. Arndt, Jorge V. Carvajal, Shawn C. Stafford
-
Patent number: 11094423Abstract: A method that provides a more direct indication of peak fuel rod centerline temperature and peak fuel rod clad temperature than conventionally inferred from the power distribution by directly and continuously measuring the fuel temperatures of the fuel pellets in one or more of the hottest fuel elements in the core. The peak fuel rod clad temperature is then obtained from the maximum measured peak fuel rod centerline temperature in combination with the maximum coolant core exit temperature and the minimum coolant flow rate.Type: GrantFiled: February 1, 2019Date of Patent: August 17, 2021Assignee: Westinghouse Electric Company LLCInventors: Michael D. Heibel, Jorge V. Carvajal, Shawn C. Stafford, Jeffrey L. Arndt
-
Publication number: 20210210233Abstract: A detection apparatus includes a resonant electrical circuit supported within an interior of a nuclear fuel rod generates a response pulse in response to an excitation pulse and transmits the response pulse through a cladding of the fuel rod to another location within a reactor in which the fuel rod is housed and without any breach in the cladding. A characteristic of the response pulse is indicative of a condition of the fuel rod. The detection apparatus also includes a transmitter positioned outside the cladding, in the reactor, in the vicinity of the fuel rod and configured to generate the excitation pulse and transmit the excitation pulse through the cladding to the resonant electrical circuit. A receiver is supported within the reactor outside of the cladding and, in response to the response pulse, communicates a signal to an electronic processing apparatus outside of the reactor.Type: ApplicationFiled: October 19, 2020Publication date: July 8, 2021Applicant: Westinghouse Electric Company LLCInventors: Jorge V. CARVAJAL, Jeffrey L. ARNDT, Shawn C. STAFFORD, Melissa M. HEAGY, John R. ABEL, II, Emre TATLI
-
Publication number: 20210210232Abstract: A detection apparatus includes a resonant electrical circuit supported within an interior of a nuclear fuel rod generates a response pulse in response to an excitation pure and transmits the response pulse through a cladding of the fuel rod to another location within a reactor in which the fuel rod is housed and without any breach in the cladding. A characteristic of the response pulse is indicative of a condition of the fuel rod. The detection apparatus also includes a transmitter positioned outside the cladding, in the reactor, in the vicinity of the fuel rod and configured to generate the excitation pulse and transmit the excitation pulse through the cladding to the resonant electrical circuit. A receiver is supported within the reactor outside of the cladding and, in response to the response pulse, communicates a signal to an electronic processing apparatus outside of the reactor.Type: ApplicationFiled: October 19, 2020Publication date: July 8, 2021Applicant: Westinghouse Electric Company LLCInventors: Jorge V. CARVAJAL, Jeffrey L. ARNDT, Shawn C. STAFFORD
-
Publication number: 20210074441Abstract: A sensor system for a fuel rod including a fuel pellet stack, the sensor system including a wireless interrogator disposed outside the fuel rod and a passive sensor component disposed within the fuel rod. The passive sensor component includes a receiver structured to receive an interrogation signal and output an excitation signal in response to receiving the interrogation signal, a reference transmitter structured to output a reference signal to the reference receiver in response to the excitation signal, a sensing transmitter structured to output a sensing signal to the sensing receiver in response to the excitation signal, and a core at least partially disposed within the sensing transmitter and coupled to move in conjunction with expansion or contraction of the fuel pellet stack, to move based on changes in pressure within the fuel rod, or to change temperature based on temperature changes within the fuel rod.Type: ApplicationFiled: September 9, 2019Publication date: March 11, 2021Applicant: Westnghouse Electric Company LLCInventors: Jeffrey L. Arndt, Jorge V. Carvajal, Shawn C. Stafford