Patents by Inventor Jeffrey L. Solomon
Jeffrey L. Solomon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12161013Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.Type: GrantFiled: September 16, 2020Date of Patent: December 3, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
-
Patent number: 12097498Abstract: An article includes a flexible structured film with a first major surface and a second major surface, wherein a first major surface of the flexible structured film has a plurality of posts separated by land areas, and the posts have an exposed surface. An anti-biofouling layer resides in the land areas, and the anti-biofouling layer has a methylated surface. An inorganic layer is on the exposed surfaces of the posts, wherein the inorganic layer includes a metal or a metal oxide. An analyte binding layer is on the inorganic layer, wherein the analyte binding layer is chosen from a reactive silane, a functionalizable hydrogel, a functionalizable polymer, and mixtures and combinations thereof. An exposed surface of the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte.Type: GrantFiled: November 24, 2021Date of Patent: September 24, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Henrik B. van Lengerich, Caleb T. Nelson, Kayla C. Niccum, Jeffrey L. Solomon, Paul B. Armstrong, Joshua M. Fishman, Tonya D. Bonilla, Phillip D. Hustad, David J. Tarnowski
-
Publication number: 20240166557Abstract: Described herein is coated article comprising: (a) a substrate comprising a ceramic, a glass, or a glass ceramic, wherein the substrate comprises a surface, the surface comprising a continuous upper portion and a plurality of lower portions, wherein each lower portion is connected to the upper portion by at least one sidewall; and (b) a first layer comprising a material capable of physical vapor deposition, wherein the first layer is disposed on the continuous upper portion and at least a portion of each sidewall and wherein at least a portion of each lower portion is free of the first layer. Methods of making such coated articles are described herein, wherein the substrate is coating via angular physical vapor deposition.Type: ApplicationFiled: April 4, 2022Publication date: May 23, 2024Inventors: Joshua M. Fishman, Paul B. Armstrong, Amir Gharachorlou, Kathleen M. Humpal, Melissa A. Lackey, Christopher S. Lyons, Mark J. Pellerite, James A. Phipps, Jeffrey L. Solomon, Karl K. Stensvad, Tarris A. Sveback, Brylee David B. Tiu
-
Publication number: 20240151646Abstract: Luminescent imaging films (100) for fluorescent enhancement and methods of making and using the same are provided. The films (100) include a flexible carrier layer (1109, and a pattern of photonic structure (120) disposed on the flexible carrier layer, which is interspersed with an anti-biofouling material (130) to provide a pattern of analyte sites (132). The pattern of photonic structure includes a patterned high-refractive-index dielectric material surface (123) so as to provide resonance at the excitation or emission wavelength to enhance a fluorescence signal from labeled analytes.Type: ApplicationFiled: April 7, 2022Publication date: May 9, 2024Inventors: Xuexue Guo, Henrik B. van Lengerich, Joshua M. Fishman, Karl K. Stensvad, Cedric Bedoya, Caleb T. Nelson, Kayla C. Niccum, John A. Wheatley, Jeffrey L. Solomon, Johah Shaver
-
Publication number: 20240142674Abstract: An article includes a first microstructured layer and a second microstructured layer. The first microstructured layer includes a plurality of first microstructures forming a plurality of first grooves therebetween. The second microstructured layer includes a plurality of second microstructures disposed adjacent to the plurality of first microstructures. The plurality of second microstructures forms a plurality of second grooves therebetween. The article further includes a light absorbing material disposed in at least each of the plurality of first grooves and each of the plurality of second grooves. The light absorbing material bonds the first microstructured layer to the second microstructured layer.Type: ApplicationFiled: December 16, 2021Publication date: May 2, 2024Inventors: Jeffrey L. Solomon, Gary E. Gaides
-
Publication number: 20240050951Abstract: An article includes a flexible structured film with a first major surface and a second major surface, wherein a first major surface of the flexible structured film has a plurality of posts separated by land areas, and the posts have an exposed surface. An anti-biofouling layer resides in the land areas, and the anti-biofouling layer has a methylated surface. An inorganic layer is on the exposed surfaces of the posts, wherein the inorganic layer includes a metal or a metal oxide. An analyte binding layer is on the inorganic layer, wherein the analyte binding layer is chosen from a reactive silane, a functionalizable hydrogel, a functionalizable polymer, and mixtures and combinations thereof. An exposed surface of the analyte binding layer includes at least one functional group selected to bind with a biochemical analyte.Type: ApplicationFiled: November 24, 2021Publication date: February 15, 2024Inventors: Henrik B. van Lengerich, Caleb T. Nelson, Kayla C. Niccum, Jeffrey L. Solomon, Paul B. Armstrong, Joshua M. Fishman, Tonya D. Bonilla, Phillip D. Hustad, David J. Tarnowski
-
Publication number: 20240043989Abstract: Metallic nanohole (23) arrays on nanowells (22) with a controlled depth and methods of making and using the same are provided. A mesh pattern of metallic layer (8) having an array of nanoholes is provided on an array of nanowells, aligned with the openings of the respective nanowells. The aspect ratios (D:W) of the nanowells are controlled to control the deposition of metal into the nanowells.Type: ApplicationFiled: December 28, 2021Publication date: February 8, 2024Inventors: Matthew R.D. Smith, David J. Tarnowski, Myungchan Kang, Caleb T. Nelson, Henrik B. van Lengerich, Christopher S. Lyons, Jeffrey L. Solomon, Bing Hao, Karl K. Stensvad
-
Publication number: 20240045324Abstract: Methods of forming an array of patterns on a substrate are provided. An array of protective tiles formed from a protectant resin is provided to cover an array of sub-regions on the substrate. An array of patterns is formed on the substrate by sequentially repeating steps (i) and (ii) for each sub-region: (i) removing the protective tile from one of the sub-regions to expose the first major surface underneath; and (ii) forming a pattern on the exposed first major surface within the one of the sub-regions.Type: ApplicationFiled: December 8, 2021Publication date: February 8, 2024Inventors: Lucas J. Hunt, Ashley R. Sonnier, James Zhu, Edwin L. Kusilek, Paul B. Armstrong, William B. Kolb, Caleb T. Nelson, Jeffrey L. Solomon, James M. Nelson, Samuel R. Hei, David J. Tarnowski, Henrik B. van Lengerich
-
Publication number: 20240004282Abstract: A structured film for forming a pattern on a substrate includes a polymeric support layer, an adhesive layer, an etch resist layer disposed between the polymeric support layer and the adhesive layer, a structured resin layer disposed between the polymeric support layer and the etch resist layer, and one or more unstructured layers disposed between the etch resist layer and the adhesive layer. The structured resin layer has a structured major surface including a plurality of engineered structures. The etch resist layer at least partially fills spaces between adjacent engineered structures to substantially planarize the structured major surface. Methods of using the structured film to form a pattern on a substrate are described.Type: ApplicationFiled: December 15, 2021Publication date: January 4, 2024Inventors: Martin B. Wolk, Robert L. Brott, Kevin W. Gotrik, Christopher S. Lyons, Caleb T. Nelson, Vadim Savvateev, James M. Nelson, Craig R. Schardt, Jeffrey L. Solomon, Karl K. Stensvad, Steven D. Theiss
-
Publication number: 20240004110Abstract: An optical article includes a waveguide and a structured film. The structured film includes a polymeric substrate, an etch stop layer disposed on the polymeric substrate, a structured layer including a plurality of engineered structures disposed on a side of the etch stop layer opposite the polymeric substrate, a planarizing backfill layer disposed over the plurality of engineered structures to define a substantially planar major surface of the planarizing backfill layer having a surface roughness Ra, and an adhesive layer disposed on the substantially planar surface of the planarizing backfill layer and bonding the structured film to the waveguide. A difference in index of refraction of the planarizing backfill layer and the structured layer is at least 0.25 for at least a first wavelength W1 in a range of 400 nm to 2500 nm. The adhesive layer has an average thickness ta where Ra<ta<¼W1.Type: ApplicationFiled: December 15, 2021Publication date: January 4, 2024Inventors: Martin B. Wolk, Robert L. Brott, Kevin W. Gotrik, Christopher S. Lyons, Caleb T. Nelson, Vadim Savvateev, James M. Nelson, Craig R. Schardt, Jeffrey L. Solomon, Karl K. Stensvad
-
Publication number: 20230390991Abstract: Presently described are methods of making an article comprising providing a structured film (1100) comprising a thermoformable planar base (212) layer and a structured surface (116, 216) layer disposed on a major surface (1200) of the planar base (212) layer wherein the structured surface (116, 216) layer comprises a different organic polymeric material than the thermoformable planar base (212) layer, and thermoforming the structured film (1100) into a thermoformed article (1000). Also described are thermoformed and thermoformable articles.Type: ApplicationFiled: December 7, 2021Publication date: December 7, 2023Inventors: Raymond P. Johnston, Jodi L. Connell, Karl J.L. Geisler, Jeffrey L. Solomon, Kristal L. Schutta, Conrad Lather, Ta-Hua Yu, Anthony F. Schultz, Duane D. Fansler, Richard J. Pokorny
-
Publication number: 20230271401Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an inorganic layer including a major surface bonded to a portion of the nanostructured first surface. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The article includes at least one enclosed void defined in part by the nanostructured first surface. The present disclosure also provides a method of making the article including treating a major surface of an inorganic layer with a coupling agent, contacting a nanostructured surface of a layer with the treated inorganic layer, and securing the two layers together via a bonded coupling agent by bonding at least one of the nanostructured surface or the treated inorganic layer. In addition, the present disclosure provides an optical element including the article.Type: ApplicationFiled: July 28, 2021Publication date: August 31, 2023Inventors: Jeffrey L. Solomon, Christopher S. Lyons, Joseph C. Spagnola, Thomas P. Klun
-
Publication number: 20230127519Abstract: The present disclosure provides an article including either at least two layers each having at least one enclosed void that is defined in part by nanostructured surfaces, or a layer having at least one enclosed void that is defined by two nanostructured surfaces in contact with each other. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the presence of another layer.Type: ApplicationFiled: April 13, 2021Publication date: April 27, 2023Inventors: Jeffrey L. Solomon, Stephen M. Menke, Nicholas C. Erickson, Daniel W. Hennen, Derek W. Patzman, Thomas P. Klun
-
Publication number: 20220271261Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.Type: ApplicationFiled: September 16, 2020Publication date: August 25, 2022Inventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A. Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P. Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
-
Patent number: 11407196Abstract: Article comprising a first, microstructured layer comprising a first material, and having first and second opposed major surfaces, the first major surface being a microstructured surface, and the microstructured surface having peaks and valleys, wherein the peaks are microstructural features each having a height defined by the distance between the peak of the respective microstructural feature and an adjacent valley; and a second layer comprising at least one of a crosslinkable or crosslinked composition, wherein at least a portion of the second major surface of the second layer is directly attached to at least a portion of the first major surface of the first, microstructured layer. Articles described herein are useful, for example, for optical film applications. For example.Type: GrantFiled: December 22, 2016Date of Patent: August 9, 2022Assignee: 3M Innovative Properties CompanyInventors: Jeffrey L. Solomon, Michael Benton Free, Steven J. McMan, Martin B. Wolk, Elisa M. Cross
-
Patent number: 11312100Abstract: Article comprising a first microstructured layer comprising a first material, and having first and second opposed major surfaces, the first major surface being a microstructured surface, and the microstructured surface having peaks and valleys, wherein the peaks are microstructural features each having a height defined by the distance between the peak of the respective microstructural feature and an adjacent valley; and a second layer comprising an adhesive material, and having a first and second opposed major surfaces, the adhesive material comprising a reaction product of a mixture comprising (meth)acrylate and epoxy in the presence of each other, wherein at least a portion of the second major surface of the second layer is directly attached to at least a portion of the first major microstructured surface of the first layer.Type: GrantFiled: December 22, 2016Date of Patent: April 26, 2022Assignee: 3M Innovative Properties CompanyInventors: Jeffrey L. Solomon, Saswata Chakraborty, Robert J. Devoe, Wayne S. Mahoney, Eric W. Nelson, Kundapur Raveesh Shenoy
-
Publication number: 20220011474Abstract: Light control films have a pattern applied to it. The light control film has a plurality of spaced apart first grooves in an optical medium. Each first groove has a closed bottom. Some of the first grooves are partially filled with a light absorbing first material that absorbs light of a predetermined wavelength range of from 400 to 2000 nm. The light absorbing first material defines an unfilled void region inside the first groove extending from a bottom surface of the light absorbing first material to the closed bottom of the first groove.Type: ApplicationFiled: December 11, 2019Publication date: January 13, 2022Inventor: Jeffrey L. Solomon
-
Publication number: 20210389503Abstract: Nanostructured articles, materials for the nanostructured articles, and intermediate articles for use in making the nanostructured articles. The nanostructured articles can be formed on a flexible film and are useful for optical metasurface applications and possibly other applications. The articles can include nanoreplicated layers or pattern transfer layers of engineered nanostructures.Type: ApplicationFiled: November 7, 2019Publication date: December 16, 2021Inventors: Martin B. Wolk, James M. Nelson, Karl K. Stensvad, Henrik B. van Lengerich, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Nicholas C. Erickson, Caleb T. Nelson
-
Publication number: 20210347135Abstract: Materials and methods useful in forming nano-scale features on substrates, and articles such as optical films incorporating such nano-scale patterned substrates.Type: ApplicationFiled: November 8, 2019Publication date: November 11, 2021Inventors: Henrik B. van Lengerich, Karl K. Stensvad, Edwin L. Kusilek, Mathew S. Stay, Caleb T. Nelson, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Martin B. Wolk, Nicholas C. Erickson, James Zhu, James M. Nelson
-
Patent number: 10928563Abstract: A microstructured diffuser is described comprising a light transmissive film comprising a first microstructured surface comprising a plurality of peaks and valleys. A coating is disposed on the first microstructured surface. The coating partially fills the valleys forming a second microstructured surface.Type: GrantFiled: September 24, 2014Date of Patent: February 23, 2021Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Nathaniel K. Naismith, William F. Edmonds, Jason S. Petaja, Brandt K. Carter, Jeffrey L. Solomon, Sara S. Merritt, Tri D. Pham