Patents by Inventor Jeffrey LaBelle

Jeffrey LaBelle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747330
    Abstract: Electrochemical impedance-based label-free and rapid biosensor for select bodily fluid biomolecule levels. Monoclonal antibodies to of biomolecule such as cortisol were covalently attached to a 16-mercaptohexadecanoic acid functionalized gold working electrode using zero-length crosslinkers N-(3-dimethylaminopropyl)-N-ethylcarbodiimide and 10 mM N-hydroxysulfosuccinimide. Cortisol was detected in phosphate buffered saline (simulated tear fluid) using a simple ferrocyanide reagent with a lower limit of detection of 18.73 pM and less than 10% relative standard deviation.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: September 5, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Tina Hakimi, Brittney Cardinell
  • Patent number: 11714083
    Abstract: The presence of analytes can be detected in the bodily fluid using Electrochemical Impedance Spectroscopy (EIS) or Electrochemical Capacitance Spectroscopy (ECS) in devices, such as handheld point-of-care devices. The devices, as well as systems and methods, utilize using Electrochemical Impedance Spectroscopy (EIS) or Electrochemical Capacitance Spectroscopy (EIS) in combination with an antibody or other target-capturing molecule on a working electrode. Imaginary impedance or phase shift, as well as background subtraction, also may be utilized.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 1, 2023
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, AXIM BIOTECHNOLOGIES. INC.
    Inventors: Jeffrey LaBelle, Garrett Repp, Chi Lin, Mark Spano, Jennifer Blain Christen, Hongwu Jiang, Marcus Smith, Andrew Penman, Pierce Youngbar, Mackenzie Honikel, Curtiss Cook
  • Patent number: 11701496
    Abstract: Guidewires useful for cooperating with catheters may be actively steered and/or provide adjustable stiffness. Angle or curvature of a guidewire, and/or flexural modulus of a guidewire, may be adjusted at one or more locations between ends thereof. Variable stiffness segments may include electrically operated compressible and/or extensible materials. Multiple tensile elements may terminate at different body elements to adjust angle or curvature at multiple locations. Multiple circumferentially and/or radially contractible fiber regions may be provided and distributed over a length of a guidewire. Adjustable flexure elements arranged in or along a guidewire may be electrically operated. A flexible core member may be centrally arranged in a tubular body. A flexible guide wire or track may cooperate with electrically operable motor units.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: July 18, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jeffrey LaBelle, Julio Morera, Marco Santello
  • Publication number: 20230184755
    Abstract: Methods for detecting one or more analytes in a sample utilizing Electrochemical Impedance Spectroscopy (EIS) measurement. In one method, analyte detection includes comparing an imaginary impedance measurement to a calibration curve of concentrations for each target analyte. The calibration curve of concentrations for each target analyte is established at an optimal frequency. In another method, a signal decoupling algorithm is utilized for detection of more than one analyte on an electrode.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 15, 2023
    Inventors: David Probst, Chi Lin, Marcus Smith, Jeffrey LaBelle
  • Patent number: 11672449
    Abstract: Embodiments of the present disclosure relate generally devices for detecting analytes in a subject. More particularly, the present disclosure provides a biosensor array for detecting analytes in a subject. Embodiments of the present disclosure include a biosensor array comprising a plurality of sensor cells for detecting an analyte in a subject. In accordance with these embodiments, the plurality of sensor cells comprises at least one electrode, at least one antibody immobilized on a surface of the at least one electrode, and a biodegradable coating in contact with the at least one antibody.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 13, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, David Probst, Bin Mu
  • Patent number: 11549904
    Abstract: Methods for detecting one or more analytes in a sample utilizing Electrochemical Impedance Spectroscopy (EIS) measurement. In one method, analyte detection includes comparing an imaginary impedance measurement to a calibration curve of concentrations for each target analyte. The calibration curve of concentrations for each target analyte is established at an optimal frequency. In another method, a signal decoupling algorithm is utilized for detection of more than one analyte on an electrode.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: January 10, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: David Probst, Chi Lin, Marcus Smith, Jeffrey LaBelle
  • Publication number: 20220192551
    Abstract: Embodiments of the present disclosure relate generally devices for detecting analytes in a subject. More particularly, the present disclosure provides a biosensor array for detecting analytes in a subject. Embodiments of the present disclosure include a biosensor array comprising a plurality of sensor cells for detecting an analyte in a subject. In accordance with these embodiments, the plurality of sensor cells comprises at least one electrode, at least one antibody immobilized on a surface of the at least one electrode, and a biodegradable coating in contact with the at least one antibody.
    Type: Application
    Filed: October 27, 2021
    Publication date: June 23, 2022
    Inventors: Jeffrey LaBelle, David Probst, Bin Mu
  • Patent number: 11346798
    Abstract: The present invention relates to a diagnostic device and methods of using the same for diagnostic assays for monitoring the presence of biological samples wherein the device allows for the determination of at least two assay components on one sensor. More specifically, the invention relates to a multi-marker electrochemical impedance spectroscopy sensor comprising a plurality of molecular recognition elements wherein the sensor comprises multiple different molecular recognition element types that are tuned in a manner that alters the frequency of the molecular recognition element type such that it is at a detectably different frequency to the frequency of other molecular recognition element types on the same sensor.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: May 31, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Ugur Demirok
  • Patent number: 11291563
    Abstract: A prosthetic device includes an internal frame assembled from multiple longitudinal members and multiple transverse members that are substantially planar in character and are arranged to be joined together. A medially arranged opening is defined in each transverse member, and is substantially registered with openings of adjacent transverse members to form a longitudinal passage, such as may be useful to receive an actuator and/or other items. At least some transverse members differ from one another in one or more of shape, length, or width. A covering member may be provided over the internal frame. Rear-facing gaps in transverse members may receive one or more elements such as dampers, batteries, or the like.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: April 5, 2022
    Assignee: Arizona Board of Regents on Behalf of Arizona
    Inventors: Jeffrey LaBelle, Courtney Mason
  • Patent number: 11185263
    Abstract: Embodiments of the present disclosure relate generally devices for detecting analytes in a subject. More particularly, the present disclosure provides a biosensor array for detecting analytes in a subject. Embodiments of the present disclosure include a biosensor array comprising a plurality of sensor cells for detecting an analyte in a subject. In accordance with these embodiments, the plurality of sensor cells comprise at least one electrode, at least one antibody immobilized on a surface of the at least one electrode, and a biodegradable coating in contact with the at least one antibody.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: November 30, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, David Probst, Bin Mu
  • Patent number: 11173057
    Abstract: A transtibial socket for a prosthetic lower limb includes a mesh arranged between rigid struts. The mesh includes a plurality of support members and a plurality of tensile members, optionally in combination with spacer members arranged between different support members. At least one tensioning member coupled with the tensile member extends through of past guides in the struts to an adjustable tensioning apparatus that is configured to allow the mesh to be constricted radially by the amputee-user. The mesh allows for the heat dissipation and volume adjustment, while increasing contact area and force distribution around a residual limb.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 16, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Andrew Smith, Patrick Hogan, Jeffrey LaBelle
  • Patent number: 11168104
    Abstract: Synthesis of novel and unique PAMAM (poly-amidoamine) polymers. PAMAM polymers can be grown by systematic alternation between ethylenediamine (EDA) and methacrylate. By taking advantage of the alternating terminal ends, successive generations G1 and G0.5 were combined under acidic conditions with Pluronic P123 as a liquid-crystal template. The resulting polymer was imaged with TEM and the product was circular and amorphous of no characteristic size ranging between about 5 nm to about 600 nm, with remarkable electrochemical activity unseen in any of the generations of PAMAM. Applications of this electroactive poly-amidoamine organic polymer include use as a new electron transfer reagent for amperometric biosensors.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 9, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Trevor Saxman, Brittney Cardinell
  • Publication number: 20210322646
    Abstract: A thermally responsive shape memory polymer (SMP) actuator includes a body having at least one non-linear segment arranged between first and second ends, with the body comprising a plurality of dots, rods, or layers of SMP material. The SMP material my include a linear aliphatic thermoplastic polyester and at least one other polymer. The non-linear segment may have a substantially flat zig-zag shape arranged between first and second substantially straight segments. A prosthetic device may include multiple thermally responsive shape memory actuators and a movable joint arranged between structural members having anchors associated therewith. At least one first SMP actuator provides pivotal movement in a first direction, and at least one second SMP actuator provides pivotal movement in a second direction. Methods for forming SMP actuators include body formation by additive manufacturing, heating the body to a glass transition temperature range while applying tension, and cooling the body.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Steven Lathers, Jeffrey LaBelle
  • Patent number: 11083394
    Abstract: A respiratory monitor, systems of respiratory monitoring, and methods of calibrating sensing equipment are described. The respiratory monitor may be configured to identify respiratory patterns while ignoring normal noise aberrations from a sensing device. The monitor may be configured for more comfortable use by a patient. Calibration techniques are also described. These calibration techniques may be employed to adjust sensing systems and to correct for unwanted noise in output signals of sensing equipment.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 10, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jeffrey LaBelle, Alejo Chavez Gaxiola
  • Publication number: 20210223196
    Abstract: The presence of analytes can be detected in the bodily fluid using Electrochemical Impedance Spectroscopy (EIS) or Electrochemical Capacitance Spectroscopy (ECS) in devices, such as handheld point-of-care devices. The devices, as well as systems and methods, utilize using Electrochemical Impedance Spectroscopy (EIS) or Electrochemical Capacitance Spectroscopy (EIS) in combination with an antibody or other target-capturing molecule on a working electrode. Imaginary impedance or phase shift, as well as background subtraction, also may be utilized.
    Type: Application
    Filed: May 4, 2018
    Publication date: July 22, 2021
    Inventors: Jeffrey LaBelle, Garrett Repp, Chi Lin, Mark Spano, Jennifer Blain Christen, Hongwu Jiang, Marcus Smith, Andrew Penman, Pierce Youngbar, Mackenzie Honikel, Curtiss Cook
  • Publication number: 20210162183
    Abstract: Guidewires useful for cooperating with catheters may be actively steered and/or provide adjustable stiffness. Angle or curvature of a guidewire, and/or flexural modulus of a guidewire, may be adjusted at one or more locations between ends thereof. Variable stiffness segments may include electrically operated compressible and/or extensible materials. Multiple tensile elements may terminate at different body elements to adjust angle or curvature at multiple locations. Multiple circumferentially and/or radially contractible fiber regions may be provided and distributed over a length of a guidewire. Adjustable flexure elements arranged in or along a guidewire may be electrically operated. A flexible core member may be centrally arranged in a tubular body. A flexible guide wire or track may cooperate with electrically operable motor units.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Jeffrey LaBelle, Julio Morera, Marco Santello
  • Patent number: 10983017
    Abstract: An electrochemical sensor (100), comprising a substrate (105), two electrodes (130) and (140) screen printed onto said substrate, an elastomer (150) disposed over one of said plurality of screen printed electrodes, and one or more electroactive species disposed within said elastomer.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 20, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Austin Feldman, Mary Siuba, Ross Carlton, Jeffrey Andrade
  • Patent number: 10967154
    Abstract: Guidewires useful for cooperating with catheters may be actively steered and/or provide adjustable stiffness. Angle or curvature of a guidewire, and/or flexural modulus of a guidewire, may be adjusted at one or more locations between ends thereof. Variable stiffness segments may include electrically operated compressible and/or extensible materials. Multiple tensile elements may terminate at different body elements to adjust angle or curvature at multiple locations. Multiple circumferentially and/or radially contractible fiber regions may be provided and distributed over a length of a guidewire. Adjustable flexure elements arranged in or along a guidewire may be electrically operated. A flexible core member may be centrally arranged in a tubular body. A flexible guide wire or track may cooperate with electrically operable motor units.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: April 6, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Julio Morera, Marco Santello
  • Patent number: 10948366
    Abstract: A flexible sensor includes a first electrode, a second electrode, and a piezoresistive element incorporating piezoresistive composite material arranged between the first electrode and the second electrode. Piezoresistive composite materials include a thermoplastic elastomer (TPE) and a conductive filler material (e.g., carbon), may have an elastic modulus value of preferably less than about 1×10?3 GPa, and exhibit a change in electrical resistance responsive to a change in pressure applied thereto. Exemplary flexible sensors may have a thickness and a feel similar to human skin, may be amenable to simple fabrication techniques (e.g., fused filament fabrication (FFF) three-dimensional (3D) printing or molding), and can be manufactured into user-specific geometries.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: March 16, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Steven Lathers
  • Patent number: 10939857
    Abstract: A blood glucose sensing device includes a substrate, multiple three-dimensionally (3D) printed electrode leads comprising graphene arranged on or over the substrate, and glucose monitoring chemistry arranged in or on (e.g., adsorbed in) at least one of the 3D printed electrode leads. An end portion of a counter electrode lead may partially surround an end portion of a working electrode lead, and a reference lead may be further provided, Optionally, the 3D printed electrode leads may include a thermoplastic material, such as an aliphatic polyester. The glucose monitoring chemistry may include an enzyme.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: March 9, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Anngela Adams, Garrett Repp