Patents by Inventor Jeffrey Linnell

Jeffrey Linnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9446523
    Abstract: An example method includes receiving position data indicative of position of a demonstration tool. Based on the received position data, the method further includes determining a motion path of the demonstration tool, wherein the motion path comprises a sequence of positions of the demonstration tool. The method additionally includes determining a replication control path for a robotic device, where the replication control path includes one or more robot movements that cause the robotic device to move a robot tool through a motion path that corresponds to the motion path of the demonstration tool. The method also includes providing for display of a visual simulation of the one or more robot movements within the replication control path.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: September 20, 2016
    Assignee: Autofuss
    Inventor: Jeffrey Linnell
  • Patent number: 9441820
    Abstract: Example systems and methods may provide for coordination between one or more light sources and one or more robotic devices. One example system includes a first device actor including an end effector coupled to a robotic device, where the robotic device has two or more degrees of freedom. The system may further include a second device actor including a movable light source, where the movable light source has at least one degree of freedom. The system may additionally include a control system that is configured to control movements of at least one of the first and second device actors to coordinate movement of a light beam from the movable light source with movement of the end effector.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: September 13, 2016
    Assignee: Bot & Dolly, LLC
    Inventors: Jeffrey Linnell, Philip Reyneri
  • Publication number: 20160176051
    Abstract: Example systems and methods may allow for use of a generic robot trajectory format to control a robotic process within a workcell. One example method includes receiving a digital representation of at least one digital robot actor, including at least one robot definition corresponding to the at least one digital robot actor and at least one sequence of robot operations for the at least one digital robot actor, determining a mapping between the at least one digital robot actor and at least one corresponding physical robot actor within a physical workcell, generating at least one robot-language-specific sequence of executable instructions for the at least one physical robot actor, and transmitting the at least one robot-language specific sequence of executable instructions to the at least one physical robot actor to execute in order to perform the at least sequence of robot operations within the physical workcell.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 23, 2016
    Inventors: Jeffrey Linnell, Kendra Byrne
  • Publication number: 20160136815
    Abstract: Example systems and methods may allow for closed-loop control of robotic operation. One example method includes receiving input data that identifies data sources to monitor and indicates adjustments to make in response to deviations by at least one of the data sources from at least one predicted state during subsequent execution of sequences of operations by robotic devices, receiving data streams from the data sources during execution of the sequences of operations by the robotic devices, identifying a deviation by one of the data sources from a predicted state for which the received input data indicates adjustments to the sequences of operations for the robotic devices, providing instructions to the robotic devices to execute the adjusted sequences of operations, and providing instructions to a second computing device to update a visual simulation of the robotic devices based on the adjusted sequences of operations.
    Type: Application
    Filed: January 26, 2016
    Publication date: May 19, 2016
    Inventors: Jeffrey Linnell, Kendra Byrne, Matthew Bitterman
  • Patent number: 9308647
    Abstract: Example systems and methods may allow for use of a generic robot trajectory format to control a robotic process within a workcell. One example method includes receiving a digital representation of at least one digital robot actor, including at least one robot definition corresponding to the at least one digital robot actor and at least one sequence of robot operations for the at least one digital robot actor, determining a mapping between the at least one digital robot actor and at least one corresponding physical robot actor within a physical workcell, generating at least one robot-language-specific sequence of executable instructions for the at least one physical robot actor, and transmitting the at least one robot-language specific sequence of executable instructions to the at least one physical robot actor to execute in order to perform the at least sequence of robot operations within the physical workcell.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 12, 2016
    Assignee: BOT & DOLLY, LLC
    Inventors: Jeffrey Linnell, Kendra Byrne
  • Publication number: 20160096331
    Abstract: Example implementations may relate to shifting a curing location during a three-dimensional (3D) printing procedure. A system may control components of a 3D printer to form a first layer of the 3D structure from resin in a first area of a resin container. The components may include: (i) a base plate and (ii) light source(s) operable to emit radiation that cures resin. After formation of the first layer, the system may move the resin container with respect to the base plate such that a second layer of the 3D structure can be formed in a second area of the resin container. The second area and the first area may be at least partially non-overlapping. The system may then control the components of the 3D printer to form the second layer of the 3D structure from resin in the second area of the resin container.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 7, 2016
    Inventors: Jeffrey Linnell, Brandon Kruysman, Jonathan Proto
  • Patent number: 9278449
    Abstract: Example systems and methods may allow for closed-loop control of robotic operation. One example method includes receiving input data that identities data sources to monitor and indicates adjustments to make in response to deviations by at least one of the data sources from at least one predicted state during subsequent execution of sequences of operations by robotic devices, receiving data streams from the data sources during execution of the sequences of operations by the robotic devices, identifying a deviation by one of the data sources from a predicted state for which the received input data indicates adjustments to the sequences of operations for the robotic devices, providing instructions to the robotic devices to execute the adjusted sequences of operations, and providing instructions to a second computing device to update a visual simulation of the robotic devices based on the adjusted sequences of operations.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: March 8, 2016
    Assignee: Bot & Dolly, LLC
    Inventors: Jeffrey Linnell, Kendra Byrne, Matthew Bitterman
  • Patent number: 9223192
    Abstract: Systems and methods are provided for generating light displays using fluids, such as water. An example system can include a plurality of nozzles, a light projector, a shutter, and a control system. Each nozzle can emit a sequence of drops of a fluid that travel along a corresponding path. The light projector can generate light beam(s) that illuminate a display area of the sequences of drops. The shutter can operate at a shutter frequency determined to cause the light beam(s) to intermittently illuminate a position of a corresponding path of a sequence of drops within the display area such that the sequence of drops appears to be a fixed, illuminated drop at the position. The control system can: generate timing information for emission of sequence(s) of drops, determine the shutter frequency based on the timing information, and operate the shutter at the shutter frequency.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: December 29, 2015
    Assignee: Bot & Dolly, LLC
    Inventors: Jeffrey Linnell, Marek Michalowski
  • Publication number: 20150343635
    Abstract: Example systems and methods may allow for use of a generic robot trajectory format to control a robotic process within a workcell. One example method includes receiving a digital representation of at least one digital robot actor, including at least one robot definition corresponding to the at least one digital robot actor and at least one sequence of robot operations for the at least one digital robot actor, determining a mapping between the at least one digital robot actor and at least one corresponding physical robot actor within a physical workcell, generating at least one robot-language-specific sequence of executable instructions for the at least one physical robot actor, and transmitting the at least one robot-language specific sequence of executable instructions to the at least one physical robot actor to execute in order to perform the at least sequence of robot operations within the physical workcell.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 3, 2015
    Inventors: Jeffrey Linnell, Kendra Byrne
  • Publication number: 20150336269
    Abstract: Example systems and methods may allow for parallel operation of robotic devices within a workcell, such as industrial robots controlled to manufacture an output product. One example method includes receiving ordered sequences of operations for a plurality of corresponding robotic devices, determining time-based sequences of operations for each of the robotic devices, where a time-based sequence of operations indicates positions within the workcell at corresponding timesteps of a global timeline, determining one or more potential collisions involving the robotic devices that would result from parallel execution of the time-based sequences of operations within the workcell, modifying the time-based sequences of operations in order to prevent the one or more potential collisions, and providing instructions for parallel execution of the modified time-based sequences of operations at timesteps of the global timeline by the robotic devices within the workcell.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 26, 2015
    Inventors: Jeffrey Linnell, Kendra Byrne
  • Patent number: 9157795
    Abstract: Example methods and systems for calibrating one or more light sources are described. One example method includes determining a position of at least three photosensors relative to a world frame, controlling an orientation of at least one light source so as to cause the at least one light source to project a light beam across an area encompassing the at least three photosensors, receiving signals indicating a sensing of a light beam directed at one of the photosensors, determining orientations of the at least one light source that cause a signal at one of the photosensors, and based on the position of the at least three photosensors and the orientations of the at least one light source that cause a signal at one of the photosensors, determining a transformation from a local frame of the at least one light source to the world frame.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: October 13, 2015
    Assignee: Bot & Dolly, LLC
    Inventors: Jeffrey Linnell, Marek Michalowski, Jean-Francois Dupuis, Thiago Hersan
  • Publication number: 20150277430
    Abstract: Example systems and methods allow for runtime control of robotic devices during a construction process. One example method includes determining at least one sequence of robot operations corresponding to at least one robot actor, causing the at least one robot actor to execute a portion of the at least one sequence of robot operations during a first time period, receiving an interrupt signal from a mobile computing device indicating a modification to the at least one sequence of robot operations, where the mobile computing device is configured to display a digital interface including one or more robot parameters describing the at least one robot actor and one or more tool parameters describing operating characteristics of at least one physical tool and causing the at least one robot actor to execute a portion of the at least one modified sequence of robot operations during a second time period.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: Jeffrey Linnell, Kendra Byrne, Matthew Bitterman
  • Publication number: 20150273685
    Abstract: Example systems and methods allow for use of a graphical interface to cause one or more robotic devices to construct an output product. One example method includes causing a graphical interface to be displayed on a display device, receiving input data corresponding to one or more interactions with the graphical interface indicating at least one motion path and at least one sequence of tool actions to execute at one or more points within the at least one motion path for use in construction of an output product, generating a plurality of digital nodes including at least one robot node, at least one motion command node, and at least one tool command node, and providing instructions for the at least one robot actor to move according to the sequence of robot motion commands determined by the at least one motion command node and execute the sequence of tool commands determined by the at least one tool command node to construct the output product.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: Jeffrey Linnell, Kendra Byrne, Matthew Bitterman
  • Publication number: 20150246443
    Abstract: An example method includes receiving position data indicative of position of a demonstration tool. Based on the received position data, the method further includes determining a motion path of the demonstration tool, wherein the motion path comprises a sequence of positions of the demonstration tool. The method additionally includes determining a replication control path for a robotic device, where the replication control path includes one or more robot movements that cause the robotic device to move a robot tool through a motion path that corresponds to the motion path of the demonstration tool. The method also includes providing for display of a visual simulation of the one or more robot movements within the replication control path.
    Type: Application
    Filed: May 14, 2015
    Publication date: September 3, 2015
    Inventor: Jeffrey Linnell
  • Patent number: 9056396
    Abstract: Example systems and methods allow for capturing motions of a demonstration tool and using the captured motions to cause a robotic device to replicate motions of the demonstration tool with a robot tool. One example method includes receiving data from one or more cameras indicative of position of a demonstration tool. Based on the received data, the method may further include determining a motion path of the demonstration tool, where the motion path includes a sequence of positions of the demonstration tool. The method may also include determining a replication control path for a robotic device, where the replication control path includes one or more robot movements that cause the robotic device to move a robot tool through a motion path that corresponds to the motion path of the demonstration tool. The method may further include causing the robotic device to move the robot tool using the one or more robot movements within the replication control path.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: June 16, 2015
    Assignee: Autofuss
    Inventor: Jeffrey Linnell