Patents by Inventor Jeffrey Smith

Jeffrey Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11830852
    Abstract: Aspects of the present disclosure provide a multi-tier semiconductor structure. For example, the multi-tier semiconductor structure can include a first power delivery network (PDN) structure, and a first semiconductor device tier disposed over and electrically connected to the first PDN structure. The multi-tier semiconductor structure can further include a signal wiring tier disposed over and electrically connected to the first semiconductor device tier, a second semiconductor device tier disposed over and electrically connected to the signal wiring tier, and a second PDN structure disposed over and electrically connected to the second semiconductor device tier. The multi-tier semiconductor structure can further include a through-silicon via (TSV) structure electrically connected to the signal wiring tier, wherein the TSV structure penetrates the second PDN structure.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: November 28, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Paul Gutwin, Brian Cline, Xiaoqing Xu, David Pietromonaco
  • Publication number: 20230377983
    Abstract: A method of manufacturing a semiconductor device includes forming a first tier of transistors on a first bonding dielectric layer on a first bulk semiconductor material. A second tier of transistors is formed on a second bonding dielectric layer over the first tier of transistors. The second bonding dielectric layer separates the first tier of transistors from the second tier of transistors. The first tier of transistors and the second tier of transistors have gate-all-around transistors. First via openings are formed that extend through the first tier of transistors and the first bonding dielectric layer. First local interconnect (LI) openings are formed that connect with the first via openings. Second via openings are formed that extend through the second tier of transistors, the second bonding dielectric layer, the first tier of transistors and the first bonding dielectric layer. Second LI openings are formed that connect with the second via openings.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 23, 2023
    Applicant: Tokyo Electron Limited
    Inventor: Jeffrey SMITH
  • Publication number: 20230377985
    Abstract: A method of manufacturing a semiconductor device includes forming a stack of epitaxially grown layers alternating between a first semiconductor material and a second semiconductor material that is etch selective to the first semiconductor material. Fin structures are formed from the stack. The fin structures include channel structures formed of the first semiconductor material. Source/drain (S/D) structures are formed on opposing ends of the channel structures by epitaxially growing a third semiconductor material. A silicide is formed around the S/D structures.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 23, 2023
    Applicant: Tokyo Electron Limited
    Inventor: Jeffrey SMITH
  • Publication number: 20230377998
    Abstract: A method of manufacturing a semiconductor device includes forming a stack of epitaxially grown layers alternating between a first semiconductor material and a second semiconductor material that is etch selective to the first semiconductor material. Fin structures are formed from the stack. The fin structures include channel structures formed of the first semiconductor material. The channel structures have opposing ends that are uncovered. Sidewall constraints are formed at the opposing ends of the channel structures. Each pair of the sidewall constraints laterally bounds a respective source/drain (S/D) region at a respective end of the channel structures while having a respective top opening for accessing the respective S/D region. S/D structures are formed on the opposing ends of the channel structures by epitaxially growing a third semiconductor material between each pair of the sidewall constraints.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 23, 2023
    Applicant: Tokyo Electron Limited
    Inventor: Jeffrey SMITH
  • Publication number: 20230378138
    Abstract: A semiconductor device includes backside power rails over a bulk semiconductor material, a first bonding dielectric layer over the backside power rails, a first tier of transistors over the first bonding dielectric layer, a second bonding dielectric layer over the first tier of transistors, and a second tier of transistors over the second bonding dielectric layer. The first tier of transistors includes first channel structures having a first epitaxially grown semiconductor material. The second tier of transistors includes second channel structures having a second epitaxially grown semiconductor material. The backside power rails are spaced apart from the first tier of transistors by the first bonding dielectric layer. The first tier of transistors is spaced apart from the second tier of transistors by the second bonding dielectric layer.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 23, 2023
    Applicant: Tokyo Electron Limited
    Inventor: Jeffrey SMITH
  • Publication number: 20230378170
    Abstract: A semiconductor device includes a tier of transistors and devices. Each transistor includes a respective channel structure including a first epitaxially grown semiconductor material, a respective shell structure all around a respective middle portion of the respective channel structure, a respective gate structure all around the respective shell structure, and respective source/drain (S/D) structures on respective opposing ends of the respective channel structure. The respective middle portion of each channel structure has a smaller circumference than the respective opposing ends of each channel structure when viewed from a respective current direction in the channel structure. The respective shell structure is formed of a semiconductor material having lattice mismatch with the first epitaxially grown semiconductor material.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 23, 2023
    Applicant: Tokyo Electron Limited
    Inventor: Jeffrey SMITH
  • Patent number: 11824527
    Abstract: An electric circuitry for signal transmission comprises a transmission gate having an input node to apply an input signal. The transmission gate includes a first transistor having an electric conductive channel of a first type of conductivity and a second transistor having an electric conductive channel of a second type of conductivity. The electric circuitry comprises a control circuit to control the signal transmission of the transmission gate. The control circuit is configured to generate a first and second control signal to control the conductivity of the first and second transistor in dependence on a voltage level of the input signal.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: November 21, 2023
    Assignee: AMS AG
    Inventors: Jeffrey Smith, Pawel Chojecki
  • Publication number: 20230352343
    Abstract: A process includes forming, over a dielectric layer, a hardmask stack including a first layer below a second layer below a third layer below a fourth layer. The first and third layers include a different hardmask material from the second and fourth layers. A trench pattern including sidewall spacer structures is formed over the hardmask stack. The fourth layer is etched in a first region. The fourth and third layers are etched in a second region. The fourth and third layers are etched in a third region. The fourth layer is etched in a fourth region. The second and first layers are etched in the second and third regions. The third layer is etched in the first and fourth regions. In the dielectric layer, trenches are formed in the first and fourth regions, and via openings, deeper than the trenches, are formed in the second and third regions.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey SMITH, David POWER, Eric Chih-Fang LIU, Anton J. DEVILLIERS, Kandabara TAPILY, Jodi GRZESKOWIAK, David CONKLIN, Michael MURPHY
  • Patent number: 11791271
    Abstract: An additional set of interconnects is created in bulk material, allowing connections to active devices to be made from both above and below. The interconnects below the active devices can form a power distribution network, and the interconnects above the active devices can form a signaling network. Various accommodations can be made to suit different applications, such as encapsulating buried elements, using sacrificial material, and replacing the bulk material with a dielectric. Epitaxial material can be used throughout the formation process, allowing for the creation of a monolithic substrate.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: October 17, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith
  • Patent number: 11786249
    Abstract: An apparatus and its method of use in delivering surgical tissue connectors into an area of the body and removing the surgical tissue connectors from the body area. The tissue connectors are connected to a base which allows for easy adjustment of the tissue connectors along a cord. The base includes a locking mechanism which impinges a sliding knot in the cord, and, in alternate configurations of the locking mechanism and knot, impinges on the sliding knot to prevent sliding in a loosening direction but allow sliding in a tightening direction, or allows sliding in a loosening direction.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 17, 2023
    Assignee: Freehold Surgical, LLC
    Inventors: Jeffrey Smith, Darren R. Sherman
  • Publication number: 20230326855
    Abstract: Aspects of the present disclosure provide a method for fabricating a semiconductor device. For example, the method can include forming a first power rail, forming a first power input structure for coupling with a first terminal of a power source that is external of the semiconductor device to receive electrical power from the power source, forming an active device between the first power rail and the first power input structure, and forming a first middle-of-line rail with a plurality of layers. The first middle-of-line rail can be configured to deliver the electrical power from the first power input structure to the first power rail. The first power rail can provide the electrical power to the active device for operation. Topmost and bottommost ones of the layers of the first middle-of-line rail can be as high as and leveled with top and bottom surfaces of the active device, respectively.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Applicant: Tokyo Electron Limited
    Inventors: Lars LIEBMANN, Jeffrey SMITH, Daniel CHANEMOUGAME, Anton J. DEVILLIERS
  • Patent number: 11781305
    Abstract: A urinal assembly having a frame and a plurality of posts or posts extending from the frame. The frame can include a plurality of openings. The openings can be defined by a plurality of sides and corners. The posts can extend from the corners and/or from the sides of the openings. In some embodiments, posts extend from a first face and a second face of the frame.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: October 10, 2023
    Assignee: Fresh Products, Inc.
    Inventors: Douglas S. Brown, Jeffrey A. Smith
  • Patent number: 11764113
    Abstract: Techniques herein include methods for fabricating CFET devices. The methods enable high-temperature processes to be performed for FINFET and gate all around (GAA) technologies without degradation of temperature sensitive materials within the device and transistors. In particular, high temperature anneals and depositions can be performed prior to deposition of temperature-sensitive materials, such as work function metals and silicides. The methods enable at least two transistor devices to be fabricated in a stepwise manner while preventing thermal violations of any materials in either transistor.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: September 19, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Jeffrey Smith, Daniel Chanemougame, Lars Liebmann, Paul Gutwin, Robert Clark, Anton Devilliers
  • Patent number: 11764266
    Abstract: A semiconductor device includes a first field-effect transistor positioned over a substrate, a second field-effect transistor stacked over the first field-effect transistor, a third field-effect transistor stacked over the second field-effect transistor, and a fourth field-effect transistor stacked over the third field-effect transistor. A bottom gate structure is disposed around a first channel structure of the first field-effect transistor and positioned over the substrate. An intermediate gate structure is disposed over the bottom gate structure and around a second channel structure of the second field-effect transistor and a third channel structure of the third field-effect transistor. A top gate structure is disposed over the intermediate gate structure and around a fourth channel structure of the fourth field-effect transistor.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: September 19, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Paul Gutwin
  • Publication number: 20230290677
    Abstract: A method of forming a semiconductor device with air gaps for low capacitance interconnects. The method includes providing a substrate containing raised metal features with a top area and a sidewall, and a void between the raised metal features, filling the void with a sacrificial fill material, and selectively depositing a blocking layer on the sacrificial fill material. The method further includes depositing a cap layer on the top area of the raised metal features, where the cap layer has an overhang that extends past the sidewall, removing the blocking layer and the sacrificial fill material between the raised metal features, and depositing a dielectric film, where the dielectric film forms an air gap between the raised metal features below the overhang.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 14, 2023
    Inventors: Kandabara Tapily, Jeffrey Smith, Robert D. Clark
  • Patent number: 11742241
    Abstract: Methods are disclosed that provide improved via profile control by forming atomic layer deposition (ALD) liners to protect side walls of vias during subsequent etch processes. ALD liners can be used for BEOL etch processes as well as for full self-aligned via (FSAV) processes and/or other processes. For one embodiment, ALD liners are used as protection or sacrificial layers for vias to reduce damage during multilayer via or trench etch processes. The ALD liners can also be deposited at different points within process flows, for example, before or after removal of organic planarization layers. The use of ALD liners facilitates shrinking of via critical dimensions (CDs) while still controlling via profiles for various process applications including dual Damascene processes and FSAV processes. In addition, the use of ALD liners improves overall CD control for via or hole formation as well as device yield and reliability.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: August 29, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Xinghua Sun, Yen-Tien Lu, Angelique Raley, David O'Meara, Jeffrey Smith
  • Patent number: 11735525
    Abstract: A semiconductor device includes a first power rail, a first power input structure, a circuit and a first middle-of-line rail. The first power rail is formed in a first rail opening within a first isolation trench on a substrate. The first power input structure is configured to connect with a first terminal of a power source that is external of the semiconductor device to receive electrical power from the power source. The circuit is formed, on the substrate, by layers between the first power rail and the first power input structure. The first middle-of-line rail is formed by one or more of the layers that form the circuit. The first middle-of-line rail is configured to deliver the electrical power from the first power input structure to the first power rail, and the first power rail provides the electrical power to the circuit for operation.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 22, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Lars Liebmann, Jeffrey Smith, Anton Devilliers, Daniel Chanemougame
  • Publication number: 20230258057
    Abstract: Casing installation assemblies for installing a casing within a borehole, as well as systems and methods related thereto are disclosed. In an embodiment, the casing installation assembly includes a tubular string, an isolation sub coupled to a downhole end of the tubular string, and a diverter sub coupled to and positioned downhole of the isolation sub. In addition, the casing installation assembly includes a landing string coupled to the diverter sub and configured to be coupled to the casing. The isolation sub includes a valve assembly that is configured to selectively prevent fluid communication between the tubular string and the diverter sub.
    Type: Application
    Filed: August 5, 2021
    Publication date: August 17, 2023
    Applicant: BP Corporation North America Inc.
    Inventors: Jeffrey SMITH, Sameh MORSY, James MCKAY, Jeremy BRAZAN, Andres DIAZ, Ahmed SHIMI, Wael ESSAM, Christopher SCARBOROUGH
  • Patent number: 11705369
    Abstract: A semiconductor device includes conductive structures formed in a first dielectric layer, a conductive cap layer selectively positioned over the conductive structures and the first dielectric layer with a top surface and sidewalls, a second dielectric layer selectively positioned over the first dielectric layer and disposed between the sidewalls of the conductive cap layer, a third dielectric layer selectively positioned over the second dielectric layer and disposed between the sidewalls of the conductive cap layer, a fourth dielectric layer arranged over the conductive structures and the third dielectric layer, and an interconnect structure formed in the fourth dielectric layer. The interconnect structure includes a trench structure and a via structure that is positioned below the trench structure and connected to the trench structure. The via structure includes a first portion positioned over the conductive cap layer and a second portion disposed over the first portion and the third dielectric layer.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: July 18, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Kandabara Tapily, Jeffrey Smith
  • Publication number: 20230223404
    Abstract: A semiconductor device includes a first three dimensional (3D) transistor and a second 3D transistor oriented parallel to the first 3D transistor disposed in a substrate, the first 3D transistor and the second 3D transistor being a subset of a plurality of transistors. The device includes a diffusion-break trench disposed in a region laterally separating the second 3D transistor from the first 3D transistor, the diffusion-break trench having a length extending along a lateral direction. The device includes a diffusion-break wire filling the diffusion-break trench, the diffusion-break wire having a height along a vertical direction, gates of the plurality of transistors being made of a different conductive material than the diffusion-break wire.
    Type: Application
    Filed: January 13, 2022
    Publication date: July 13, 2023
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Paul Gutwin