Patents by Inventor Jeffrey T. Keacher

Jeffrey T. Keacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240033546
    Abstract: A fall-protection system including a harness and a fall-protection apparatus with a lifeline bearing a connector configured to be connected to the harness; and, a fall-protection monitoring system with a base unit and with at least one sensor module configured to sense a condition of the connector and to communicate a signal indicative of the condition of the connector to the base unit.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 1, 2024
    Inventors: Lauren K. Carlson, Scott E. Brigham, Christopher W. Coyle, Heidi Lopez-Hidalgo, Jonathan J. Lepp, Stephen D. Shaver, Jeffrey T. Keacher
  • Publication number: 20230381520
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Applicant: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 11819714
    Abstract: A fall-protection system including a harness and a fall-protection apparatus with a lifeline bearing a connector configured to be connected to the harness; and, a fall-protection monitoring system with a base unit and with at least one sensor module configured to sense a condition of the connector and to communicate a signal indicative of the condition of the connector to the base unit.
    Type: Grant
    Filed: March 15, 2023
    Date of Patent: November 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Lauren K. Carlson, Scott E. Brigham, Christopher W. Coyle, Heidi Lopez-Hidalgo, Jonathan J. Lepp, Stephen D. Shaver, Jeffrey T. Keacher
  • Patent number: 11752343
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Publication number: 20230218934
    Abstract: A fall-protection system including a harness and a fall-protection apparatus with a lifeline bearing a connector configured to be connected to the harness; and, a fall-protection monitoring system with a base unit and with at least one sensor module configured to sense a condition of the connector and to communicate a signal indicative of the condition of the connector to the base unit.
    Type: Application
    Filed: March 15, 2023
    Publication date: July 13, 2023
    Inventors: Lauren K. Carlson, Scott E. Brigham, Christopher W. Coyle, Heidi Lopez-Hidalgo, Jonathan J. Lepp, Stephen D. Shaver, Jeffrey T. Keacher
  • Publication number: 20230218935
    Abstract: Techniques are described for monitoring and controlling fall protection equipment. For example, the techniques of this disclosure may be used to monitor the connection status of fall protection equipment, e.g., whether or not the fall protection equipment is connected to a support structure. The techniques described in the disclosure may determine whether the fall protection equipment is connected to a support structure based on changes in a resonant frequency of an electronic circuit of an inductive sensor within the fall protection equipment. The inductive sensor may be formed from sets of one or more coils, where a first set of one or more coils and a second set of one or more coils are wound in opposite directions.
    Type: Application
    Filed: March 15, 2023
    Publication date: July 13, 2023
    Inventors: Anthony J. Nowicki, Ronald D. Jesme, Judd D. Perner, Scott E. Brigham, Jeffrey T. Keacher, Mohsen Salehi, Jonathan J. Lepp
  • Patent number: 11633633
    Abstract: Techniques are described for monitoring and controlling fall protection equipment. For example, the techniques of this disclosure may be used to monitor the connection status of fall protection equipment, e.g., whether or not the fall protection equipment is connected to a support structure. The techniques described in the disclosure may determine whether the fall protection equipment is connected to a support structure based on changes in a resonant frequency of an electronic circuit of an inductive sensor within the fall protection equipment. The inductive sensor may be formed from sets of one or more coils, where a first set of one or more coils and a second set of one or more coils are wound in opposite directions.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: April 25, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Anthony J. Nowicki, Ronald D. Jesme, Judd D. Perner, Scott E. Brigham, Jeffrey T. Keacher, Mohsen Salehi, Jonathan J. Lepp
  • Patent number: 11633632
    Abstract: A fall-protection system including a harness and a fall-protection apparatus with a lifeline bearing a connector configured to be connected to the harness; and, a fall-protection monitoring system with a base unit and with at least one sensor module configured to sense a condition of the connector and to communicate a signal indicative of the condition of the connector to the base unit.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: April 25, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Lauren K. Carlson, Scott E. Brigham, Christopher W. Coyle, Heidi A. Lopez-Hidalgo, Jonathan J. Lepp, Stephen D. Shaver, Jeffrey T. Keacher
  • Publication number: 20220134149
    Abstract: A fall-protection system including a harness and a fall-protection apparatus with a lifeline bearing a connector configured to be connected to the harness; and, a fall-protection monitoring system with a base unit and with at least one sensor module configured to sense a condition of the connector and to communicate a signal indicative of the condition of the connector to the base unit.
    Type: Application
    Filed: March 16, 2020
    Publication date: May 5, 2022
    Inventors: Lauren K. Carlson, Scott E. Brigham, Christopher W. Coyle, Heidi A. Lopez-Hidalgo, Jonathan J. Lepp, Stephen D. Shaver, Jeffrey T. Keacher
  • Publication number: 20200368563
    Abstract: Techniques are described for monitoring and controlling fall protection equipment. For example, the techniques of this disclosure may be used to monitor the connection status of fall protection equipment, e.g., whether or not the fall protection equipment is connected to a support structure. The techniques described in the disclosure may determine whether the fall protection equipment is connected to a support structure based on changes in a resonant frequency of an electronic circuit of an inductive sensor within the fall protection equipment. The inductive sensor may be formed from sets of one or more coils, where a first set of one or more coils and a second set of one or more coils are wound in opposite directions.
    Type: Application
    Filed: February 6, 2019
    Publication date: November 26, 2020
    Inventors: Anthony J. Nowicki, Ronald D. Jesme, Judd D. Perner, Scott E. Brigham, Jeffrey T. Keacher, Mohsen Salehi, Jonathan J. Lepp
  • Publication number: 20200368532
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 26, 2020
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 10744326
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Patent number: 10356085
    Abstract: A system includes a pump controller, a user device, and a server. The pump controller transmits identity information via a first communication connection with the pump controller. The server validates the identity information in response to determining that characteristics of the identity information satisfy one or more predetermined validity criteria that are different than the identity information. The pump controller establishes a second communication connection with the server using authentication credentials generated by the server and transmitted to the pump controller in response to validating the identity information. The server transmits a unique activation code to the pump controller via the second connection. The pump controller displays the activation code. A user device associated with a user account transmits the activation code to the server.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: July 16, 2019
    Assignee: Graco Minnesota Inc.
    Inventors: Kelly L. Shanks, Theodore J. Stone, Jeffrey T. Keacher
  • Patent number: 9937342
    Abstract: The disclosure provides techniques for parameter-directed shifting of electrical stimulation electrode combinations. An external programmer permits a user to shift electrode combinations, e.g., along the length of a lead or leads. The external programmer accepts shift input and causes an electrical stimulator to shift electrode combinations as indicated by the input. Different sets of electrodes may have different electrode counts. For example, an array of electrodes carried by one lead may have a greater number of electrodes than an array of electrodes carried on another lead. The disclosure provides techniques for shifting electrode combinations among leads with different electrode counts. For example, an external programmer may execute shifts in a series of shift operations, where the number of shift operations along the length of a lead having a greater electrode count is greater than the number of shift steps along the length of a lead having a lesser electrode count.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 10, 2018
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Joseph J. Nolan, Nathan A. Torgerson, Wende L. Dewing, Todd V. Smith, Shyam Gokaldas, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher
  • Patent number: 9623245
    Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: April 18, 2017
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Patent number: 9498622
    Abstract: Peripheral nerve field stimulation (PNFS) delivered by medical device to a patient may be programmed by specifying one or more characteristics of a stimulation field generated by the IMD to provide the PNFS. The characteristics of the stimulation field may include, for example, a direction of stimulation within the field, a breadth of the stimulation field, a focus of stimulation within the stimulation field, a depth of the stimulation field relative to a reference point, such as the epidermis of the patient, or a nerve fiber diameter selection.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 22, 2016
    Assignee: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Publication number: 20160319826
    Abstract: A system includes a pump controller, a user device, and a server. The pump controller transmits identity information via a first communication connection with the pump controller. The server validates the identity information in response to determining that characteristics of the identity information satisfy one or more predetermined validity criteria that are different than the identity information. The pump controller establishes a second communication connection with the server using authentication credentials generated by the server and transmitted to the pump controller in response to validating the identity information. The server transmits a unique activation code to the pump controller via the second connection. The pump controller displays the activation code. A user device associated with a user account transmits the activation code to the server.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 3, 2016
    Inventors: Kelly L. Shanks, Theodore J. Stone, Jeffrey T. Keacher
  • Patent number: 9259587
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 16, 2016
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Publication number: 20140371813
    Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Publication number: 20140350636
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik