Patents by Inventor Jeffrey W. Baldwin

Jeffrey W. Baldwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220251322
    Abstract: An article having: an elastomeric jacket; a gel within the jacket; and a plurality of gas-filled, polymerically-encapsulated microbubbles suspended in the gel. The microbubbles have a Gaussian particle size distribution. The largest microbubble has a diameter at least 10 times the diameter of the smallest microbubble. The article may exhibit Anderson localization at at least one frequency of sound waves impacting the article.
    Type: Application
    Filed: January 25, 2022
    Publication date: August 11, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bernard R. Matis, Nicholas T. Gangemi, Jeffrey W. Baldwin, Steven W. Liskey, Aaron D. Edmunds, William B. Wilson, Douglas M. Photiadis
  • Publication number: 20210149001
    Abstract: A high-sensitivity and ultra-low power consumption magnetic sensor using a magnetoelectric (ME) composite comprising of magnetostrictive and piezoelectric layers. This sensor exploits the magnetically driven resonance shift of a free-standing magnetoelectric micro-beam resonator. Also disclosed is the related method for making the magnetic sensor.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 20, 2021
    Inventors: Peter Finkel, Steven P. Bennett, Margo Staruch, Konrad Bussmann, Jeffrey W. Baldwin, Bernard R. Matis, Ronald Lacomb, William Zappone, Julie Lacomb, Meredith Metzler, Norman Gottron
  • Publication number: 20210009409
    Abstract: Disclosed is a method of: providing a hydrogenated sp2 carbon allotrope, and releasing hydrogen gas from the carbon allotrope. The method may be used an apparatus having: a vessel for containing the hydrogenated sp2 carbon allotrope, a fuel cell capable of using hydrogen gas a fuel, and a tube for transporting hydrogen gas from the vessel to the fuel cell. The carbon allotrope may be made by: providing a mixture of an sp2 carbon allotrope and liquid ammonia, adding an alkali metal to the mixture, and sonicating the mixture to form a hydrogenated form of the carbon allotrope. The hydrogenated carbon can be at least 3.5 wt % hydrogen covalently bound to the carbon.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 14, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey W. Baldwin, James R. Morse, David A. Zugell, Bernard R. Matis, Heather D. Willauer, Nicolas T Gangemi, Brian Houston
  • Patent number: 10877110
    Abstract: A high-sensitivity and ultra-low power consumption magnetic sensor using a magnetoelectric (ME) composite comprising of magnetostrictive and piezoelectric layers. This sensor exploits the magnetically driven resonance shift of a free-standing magnetoelectric micro-beam resonator. Also disclosed is the related method for making the magnetic sensor.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: December 29, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Peter Finkel, Steven P. Bennett, Margo Staruch, Konrad Bussmann, Jeffrey W. Baldwin, Bernard R. Matis, Ronald Lacomb, William Zappone, Julie Lacomb, Meredith Metzler, Norman Gottron
  • Publication number: 20180259599
    Abstract: A high-sensitivity and ultra-low power consumption magnetic sensor using a magnetoelectric (ME) composite comprising of magnetostrictive and piezoelectric layers. This sensor exploits the magnetically driven resonance shift of a free-standing magnetoelectric micro-beam resonator. Also disclosed is the related method for making the magnetic sensor.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 13, 2018
    Inventors: Peter Finkel, Steven P. Bennett, Margo Staruch, Konrad Bussmann, Jeffrey W. Baldwin, Bernard R. Matis, Ronald Lacomb, William Zappone, Julie Lacomb, Meredith Metzler, Norman Gottron
  • Patent number: 9853104
    Abstract: A graphene compound made from the method of preparing graphene flakes or chemical vapor deposition grown graphene films on a SiO2/Si substrate; exposing the graphene flakes or the chemical vapor deposition grown graphene film to hydrogen plasma; performing hydrogenation of the graphene; wherein the hydrogenated graphene has a majority carrier type; creating a bandgap from the hydrogenation of the graphene; applying an electric field to the hydrogenated graphene; and tuning the bandgap.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: December 26, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey W. Baldwin, Bernard R. Matis, James S. Burgess, Felipe Bulat-Jara, Adam L. Friedman, Brian H. Houston
  • Publication number: 20160218184
    Abstract: A graphene compound made from the method of preparing graphene flakes or chemical vapor deposition grown graphene films on a SiO2/Si substrate; exposing the graphene flakes or the chemical vapor deposition grown graphene film to hydrogen plasma; performing hydrogenation of the graphene; wherein the hydrogenated graphene has a majority carrier type; creating a bandgap from the hydrogenation of the graphene; applying an electric field to the hydrogenated graphene; and tuning the bandgap.
    Type: Application
    Filed: April 6, 2016
    Publication date: July 28, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey W. Baldwin, Bernard R. Matis, James S. Burgess, Felipe Bulat-Jara, Adam L. Friedman, Brian H. Houston
  • Patent number: 9312130
    Abstract: A method of introducing a bandgap in single layer graphite on a SiO2 substrate comprising the steps of preparing graphene flakes and CVD grown graphene films on a SiO2/Si substrate and performing hydrogenation of the graphene. Additionally, controlling the majority carrier type via surface adsorbates.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: April 12, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey W. Baldwin, Bernard R. Matis, James S. Burgess, Felipe Bulat-Jara, Adam L. Friedman, Brian H Houston
  • Patent number: 9295152
    Abstract: A device comprising a single crystal diamond substrate with a buried electrically conducting layer with ?m square openings spaced apart milled into the diamond by ablating the carbon above wherein the step of ablating uses a diode pumped tripled Nd:YAG laser at 355 nm and wherein the square openings have electrical contacts and wherein the resistance measured between the square openings is dominated by the buried electrically conducting layer and on the order of about 1 k?.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 22, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Bradford B. Pate, Matthew P. Ray, Jeffrey W. Baldwin
  • Publication number: 20150223331
    Abstract: A device comprising a single crystal diamond substrate with a buried electrically conducting layer with ?m square openings spaced apart milled into the diamond by ablating the carbon above wherein the step of ablating uses a diode pumped tripled Nd:YAG laser at 355 nm and wherein the square openings have electrical contacts and wherein the resistance measured between the square openings is dominated by the buried electrically conducting layer and on the order of about 1 k?.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bradford B. Pate, Matthew P. Ray, Jeffrey W. Baldwin
  • Patent number: 9040345
    Abstract: A method of laser ablation for electrical contact to a buried electrically conducting layer in diamond comprising polishing a single crystal diamond substrate having a first carbon surface, implanting the diamond with a beam of 180 KeV followed by 150 KeV C+ ions at fluencies of 4×1015 ions/cm2 and 5×1015 ions/cm2 respectively, forming an electrically conducting carbon layer beneath the first carbon surface, and ablating the single crystal diamond which lies between the electrically conducting layer and the first carbon surface.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 26, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Bradford B. Pate, Matthew P. Ray, Jeffrey W. Baldwin
  • Patent number: 9007213
    Abstract: Methods and systems for object identification and/or authentication.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: April 14, 2015
    Assignees: The United States of America as represented by the Secretary of the Navy, Cornell University
    Inventors: Keith L. Aubin, Jeffrey W. Baldwin, Harold G. Craighead, Brian H. Houston, Jeevak M. Parpia, Robert B. Reichenbach, Maxim Zalalutdinov
  • Patent number: 8704315
    Abstract: The present invention is directed to a CMOS integrated micromechanical device fabricated in accordance with a standard CMOS foundry fabrication process. The standard CMOS foundry fabrication process is characterized by a predetermined layer map and a predetermined set of fabrication rules. The device includes a semiconductor substrate formed or provided in accordance with the predetermined layer map and the predetermined set of fabrication rules. A MEMS resonator device is fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules. The MEMS resonator device includes a micromechanical resonator structure having a surface area greater than or equal to approximately 20 square microns. At least one CMOS circuit is coupled to the MEMS resonator member. The at least one CMOS circuit is also fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 22, 2014
    Assignee: Cornell University
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Publication number: 20140080295
    Abstract: A method of introducing a bandgap in single layer graphite on a SiO2 substrate comprising the steps of preparing graphene flakes and CVD grown graphene films on a SiO2/Si substrate and performing hydrogenation of the graphene. Additionally, controlling the majority carrier type via surface adsorbates.
    Type: Application
    Filed: July 15, 2013
    Publication date: March 20, 2014
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: Jeffrey W. Baldwin, Bernard R. Matis, James S. Burgess, Felipe Bulat-Jara, Adam L. Friedman, Brian H. Houston
  • Publication number: 20130248225
    Abstract: A method of laser ablation for electrical contact to a buried electrically conducting layer in diamond comprising polishing a single crystal diamond substrate having a first carbon surface, implanting the diamond with a beam of 180 KeV followed by 150 KeV C+ ions at fluencies of 4×1015 ions/cm2 and 5×1015 ions/cm2 respectively, forming an electrically conducting carbon layer beneath the first carbon surface, and ablating the single crystal diamond which lies between the electrically conducting layer and the first carbon surface.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 26, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bradford B. Pate, Matthew P. Ray, Jeffrey W. Baldwin
  • Patent number: 8174352
    Abstract: A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: May 8, 2012
    Assignees: Cornell University, The United States of America as Represented by the Secretary of the Navy
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Publication number: 20110121937
    Abstract: A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 26, 2011
    Applicant: CORNELL UNIVERSITY
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Publication number: 20110101475
    Abstract: The present invention is directed to a CMOS integrated micromechanical device fabricated in accordance with a standard CMOS foundry fabrication process. The standard CMOS foundry fabrication process is characterized by a predetermined layer map and a predetermined set of fabrication rules. The device includes a semiconductor substrate formed or provided in accordance with the predetermined layer map and the predetermined set of fabrication rules. A MEMS resonator device is fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules. The MEMS resonator device includes a micromechanical resonator structure having a surface area greater than or equal to approximately 20 square microns. At least one CMOS circuit is coupled to the MEMS resonator member. The at least one CMOS circuit is also fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 5, 2011
    Applicant: CORNELL UNIVERSITY
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Publication number: 20100086735
    Abstract: A method of functionalizing a nanomechanical resonator involving providing a wafer with a thin film layer on a sacrificial layer, suspending freely a resonator on the wafer, coating the resonator with a liquid containing a terminal allyl group, placing a quartz-mask on the wafer, trapping the liquid between the mask and the wafer, initiating a reaction of the terminal allyl with photo-induced electrons, rinsing the wafer, and drying the wafer. The liquid can be 2-allyl hexafluoroisopropanol or another liquid that has an effective sorbent group for DMMP or DNT. The initiating can be performed via a deep UV source selected from a Hg arc, Xe arc, or DUV laser. The method can further include incorporating narrow gaps of from about 50 to about 300 nm in the resonator.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 8, 2010
    Inventors: Jeffrey W. Baldwin, Maxim K. Zalalutdinov, Bradford B. Pate, Brian H. Houston
  • Publication number: 20090206987
    Abstract: Methods and systems for object identification and/or authentication.
    Type: Application
    Filed: April 19, 2007
    Publication date: August 20, 2009
    Applicants: CORNELL UNIVERSITY, NAVAL RESEARCH LABORATORY
    Inventors: Keith L. Aubin, Jeffrey W. Baldwin, Harold G. Craighead, Brian H. Houston, Jeevak M. Parpia, Robert B. Reichenbach, Maxim Zalalutdinov