Patents by Inventor Jen-Kuang Fang

Jen-Kuang Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6820329
    Abstract: The present invention discloses a method of manufacturing a multi-chip stacking package. The characteristic of the invention is that after the alignment of the bumps of at least two chips, welded bumps will be generated in a high temperature welding to form a welded bump. Furthermore, one of the at least two chips may only provide bonding pad similar to the Under Bump Metallurgy and may not provide bumps, and using the bonding pad to be welded with the bump on another chip.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: November 23, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Jen-Kuang Fang
  • Publication number: 20040226743
    Abstract: A bumpless assembly package mainly comprises a substrate, and a chip. The substrate has an upper surface and an opposite lower surface, a plurality of first contacts and a plurality of second contacts formed on the upper surface of the substrate, wherein one of the first contacts is electrically connected to one of the second contacts. The chip has an active surface and a boding pad formed on the active surface and is disposed in the opening, Moreover, an electrically conductive layer is disposed above the upper surface of the substrate and the active surface of the chip, and extended from the upper surface of the substrate to the active surface of the chip so as to electrically connect the chip and the substrate. In addition, a protective layer is provided to dispose above the electrically conductive layer and expose the second contacts so that the second contacts can electrically connect to external electronic devices.
    Type: Application
    Filed: November 12, 2003
    Publication date: November 18, 2004
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: Jen-Kuang Fang
  • Publication number: 20040185651
    Abstract: A method of forming a plurality of bumps over a wafer. The wafer has an active surface having a passivation layer and a plurality of contact pads thereon. The passivation layer exposes the contact pads on the active surface. An adhesion layer is formed over the active surface of the wafer and covers both the contact pads and the passivation layer. A metallic layer is formed over the adhesion layer. The adhesion layer and the metallic layer are patterned so that the adhesion layer and the metallic layer remain on top of the contact pads. A photoresist layer is formed on the active surface of the wafer. The photoresist layer has a plurality of openings that expose the metallic layer. Flux material is deposited into the openings and then a solder block is disposed into each of the openings. A reflow process is carried out so that the solder block bonds with the metallic layer. Finally, the flux material and the photoresist layer are removed.
    Type: Application
    Filed: July 11, 2003
    Publication date: September 23, 2004
    Inventors: Tsung-Hua Wu, Min-Lung Huang, Shih-Chang Lee, Jen-Kuang Fang, Yung-I Yeh
  • Patent number: 6756256
    Abstract: A method for preventing burnt fuse pads from further electrical connection suitable before the formation of bumps on the wafer. A dielectric layer is formed over the active surface of the wafer covering the bump pads and the fuse pads of the wafer, wherein a central region of the fuse pads is burnt to form a gap which allows the material of the dielectric layer to fill up the gap. Afterwards, either a part of the dielectric layer is removed and the part of the dielectric layer covering the fuse pads remainsor a part of the dielectric layer covering the bump pads is removed. Then, an under ball metallurgy layer is formed on the bump pads of the wafer so that the material of the under ball metallurgy layer does not cover the two sides of the fuse pad at the same time, or fill into the gap. As a result, the electrical isolation still remains.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: June 29, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Publication number: 20040112944
    Abstract: A solder ball fabricating process for forming solder balls over a wafer having an active layer is provided. A patterned solder mask layer is formed over the active surface of the wafer. The patterned solder mask layer has an opening that exposes a bonding pad on the wafer. Solder material is deposited into the opening over the bonding pad. A reflow process is conducted to form a pre-solder body. The aforementioned steps are repeated so that various solder materials are fused together to form a solder ball over the bonding pad.
    Type: Application
    Filed: August 14, 2003
    Publication date: June 17, 2004
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou
  • Publication number: 20040114294
    Abstract: A semiconductor device with a capability can prevent a burnt fuse pad from re-electrical connection, wherein the semiconductor device includes a bump pad and a fuse pad over a wafer. The fuse pad includes the burnt fuse pad having a gap for electrical isolation. The semiconductor device comprises a dielectric layer, disposed substantially above the burnt fuse pad and filling the gap, and a bump structure, disposed on the bump pad. The foregoing semiconductor device can further comprise a passivation layer, which exposes the bump pad and a portion of the burnt fuse pad. Wherein, the dielectric layer is over the passivation layer, covers the exposed portion of the burnt fuse pad and fills the gap.
    Type: Application
    Filed: August 15, 2003
    Publication date: June 17, 2004
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Patent number: 6743707
    Abstract: The present invention provides a bump fabrication process. A wafer is provided with a patterned photoresist layer formed on the wafer. The patterned photoresist layer has a plurality of openings, corresponding to bonding pads. A conductive layer is formed on the photoresist layer and the exposed bonding pads. Afterwards, a sticker film is the provided to lift off the conductive layer on the photoresist layer, while the conductive layer within the openings is not removed. A solder paste is filled into the openings. A reflow step is performed to turn the filled solder paste into globular bumps. At last, the protoresist layer is removed.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: June 1, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou
  • Patent number: 6737353
    Abstract: A semiconductor device having a bump electrode comprising a substrate having a dielectric layer formed thereon, an aluminum contact pad on the substrate wherein at least a portion of the aluminum contact pad is exposed through the dielectric layer on the substrate. The aluminum contact pad is provided with an under bump metallurgy including a aluminum layer formed on the exposed portion of the aluminum contact pad, a nickel-vanadium layer formed on the aluminum layer and a titanium layer formed on the nickel-vanadium layer. A gold bump formed on the titanium layer acts as the bump electrode.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: May 18, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Jen Kuang Fang, Ching Hua Chiang, Shih Kuang Chen, Chau Fu Weng
  • Patent number: 6732912
    Abstract: A solder ball attaching process for attaching solder balls to a wafer is provided. First, an under-ball-metallurgy layer is formed on the active surface of the wafer. Patterned masking layers are sequentially formed over the active surface of the wafer. The masking layers together form a step opening structure that exposes the under-ball-metallic layer. A solder ball is placed on the uppermost masking layer and allowed to roll so that the solder ball drops into the step opening structure by gravity. A reflow process is conducted to join the solder ball and the under-ball-metallurgy layer together. Finally, various masking layers are removed to expose the solder ball on the bonding pad of the wafer.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: May 11, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Publication number: 20040080033
    Abstract: A flip chip assembly comprises an IC chip having a plurality of first solder bumps formed on a lower surface thereof and a heat sink having a plurality of second solder bumps, wherein the heat sink are attached to an upper surface of the IC chip via the second solder bumps. The present invention further provides a method for producing the flip chip assembly.
    Type: Application
    Filed: October 16, 2003
    Publication date: April 29, 2004
    Applicant: Advanced Semiconductor Engineering Inc.
    Inventor: Jen Kuang Fang
  • Patent number: 6723630
    Abstract: A solder ball fabrication process for forming solder balls over a wafer having an active layer is provided. A plurality of patterned solder mask layers is sequentially formed over the active surface of the wafer. Each patterned solder mask layer has at least an opening that exposes a solder ball pad on the wafer. The opening of the patterned solder mask layers further away from the solder ball pad is larger in diameter than the opening of the patterned solder mask close to the solder ball pad. Solder material is deposited into the openings and a reflow process is conducted to melt the solder material together so that a solder ball is formed over the solder ball pad.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: April 20, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou
  • Patent number: 6720244
    Abstract: A bump fabrication method is described. The method comprises the steps of providing a wafer having an active surface and a plurality of bonding pads formed on the active surface; respectively forming an under bump metallurgy layer onto the bonding pads, wherein the under bump metallurgy layer includes at least a wetting layer having an oxidized region and positioned at a top layer of the under bump metallurgy layer; patterning a masking layer on the active surface wherein the masking layer is provided with a plurality of openings to expose the wetting layers; removing the oxidized region of the wetting layer using ionic bombardment; fully forming a flux film on the active layer, wherein at least a portion of the flux film covers onto the wetting layer; filling a solder paste into the openings; performing a re-flow process to form a plurality of bumps after the solder paste melts so that the flux film removes the oxidized region of the wetting layer; and removing the masking layer.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: April 13, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Patent number: 6716739
    Abstract: A method of forming bumps on the active surface of a silicon wafer. A first under-ball metallic layer is formed over the active surface of the wafer. A second under-ball metallic layer is formed over the first under-ball metallic layer. A portion of the second under-ball metallic layer is removed to expose the first under-ball metallic layer. A plurality of solder blocks is implanted over the second under-ball metallic layer. A reflux operation is conducted and then the exposed first under-ball metallic layer is removed so that only the first under-ball metallic layer underneath the second under-ball metallic layer remains.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: April 6, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee
  • Patent number: 6713320
    Abstract: A bumping process wherein a substrate is first provided with many electrical connections. Subsequently, the bumps on the bump transfer substrate are pressed onto the electrical connections of the substrate accompanying a heating process and then the bumps are transferred onto the electrical connections of the substrate because the adhesion characteristic between the bumps and the electrical connections is better than that between the bumps and the release layer.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: March 30, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Patent number: 6713870
    Abstract: A wafer level chip-scale package comprises a chip including a plurality of metal pads individually formed on each of the bonding pads. In the same metal circuit layer where metal pads exist, bump pads are arranged in a matrix configuration, wherein almost all of them are electrically connected one by one to bonding pads through connection traces. Bump pad isolated by lacking connection trace has an extension portion of itself, and the resilient passivation layer does not overlay the bump pad and extension portion. There is a metal wire used to connect the extension portion of the bump pad with the corresponding metal pad, which is also not overlaid by the resilient passivation layer. Therefore, the metal wire can directly cross over other connection traces to achieve the electrical connection on a shorter route.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: March 30, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Jen-Kuang Fang
  • Patent number: 6692581
    Abstract: A solder paste for fabricating bumps includes a flux and metallic alloy powder. The metallic alloy powder includes a plurality of low eutectic metallic alloy granules, and the size of these metallic alloy granules is 20-60 &mgr;m and the average size of the metallic granules is 35 &mgr;m to 45 &mgr;m.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 17, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Ching-Fu Horng, Shih-Kuang Chen, Shyh-Ing Wu, Chun-Hung Lin, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Patent number: 6673711
    Abstract: A solder ball fabricating process for forming solder balls over a wafer having an active layer is provided. A patterned solder mask layer is formed over the active surface of the wafer. The patterned solder mask layer has an opening that exposes a bonding pad on the wafer. Solder material is deposited into the opening over the bonding pad. A reflow process is conducted to form a pre-solder body. The aforementioned steps are repeated so that various solder materials are fused together to form a solder ball over the bonding pad.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: January 6, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yung-Chi Lee, Yu-Chen Chou
  • Patent number: 6664128
    Abstract: The present invention provides a bump fabrication process. After forming an under bump metallurgy (UBM) layer and bumps in sequence over the substrate, the under bump metallurgy layer that is not covered by the bumps is etched with an etchant. The etchant mainly comprises sulfuric acid and de-ionized water. The etchant can etch the nickel-vanadium layer of the UBM layer without damaging the bumps.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 16, 2003
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Min-Lung Huang, Jau-Shoung Chen, Ching-Huei Su, Chao-Fu Weng, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Publication number: 20030189245
    Abstract: A flip chip assembly comprises an IC chip having a plurality of first solder bumps formed on a lower surface thereof and a heat sink having a plurality of second solder bumps, wherein the heat sink are attached to an upper surface of the IC chip via the second solder bumps. The present invention further provides a method for producing the flip chip assembly.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Jen Kuang Fang
  • Publication number: 20030189260
    Abstract: A flip-chip bonding structure suited for bonding a first connect pad and a second connect pad. The flip-chip bonding structure includes a metal layer, a bump and an adhesion body. The metal layer is placed on the first connect pad. The bump, lead-free material, is placed on the metal layer. The adhesion body, made of lead-free material, is placed on the bump and is bonded onto the second connect pad.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 9, 2003
    Inventors: HO-MING TONG, CHUN-CHI LEE, JEN-KUANG FANG, MIN-LUNG HUANG, CHING-HUEI SU, CHAO-FU WENG