Patents by Inventor Jennifer O'Neil

Jennifer O'Neil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10913976
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 9, 2021
    Assignee: Life Technologies Corporation
    Inventors: Bin Li, Kai Lao, Jennifer O'Neil, Jennifer Kunkel, Kellie Haley, Rachel Kasinskas, Zhaochun Ma, Pius Brzoska
  • Publication number: 20210032691
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Application
    Filed: October 13, 2020
    Publication date: February 4, 2021
    Inventors: Bin LI, Kai Qin LAO, Jennifer O'NEIL, Jennifer KUNKEL, Kellie HALEY, Rachel KASINSKAS, Zhaochun MA, Pius BRZOSKA
  • Patent number: 10858695
    Abstract: In some embodiments, provided are methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components. In some embodiments, methods for nucleic acid amplification comprise a amplifying at least one polynucleotide onto a surface under isothermal amplification conditions, optionally in the presence of a polymer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: December 8, 2020
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan M. Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20190338258
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: June 14, 2019
    Publication date: November 7, 2019
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO
  • Publication number: 20190264272
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Application
    Filed: March 12, 2019
    Publication date: August 29, 2019
    Inventors: Bin LI, Kai Lao, Jennifer O'NEIL, Jennifer KUNKEL, Kellie HALEY, Rachel KASINSKAS, Zhaochun MA, Pius BRZOSKA
  • Patent number: 10329544
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: June 25, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao, Wolfgang Hinz
  • Publication number: 20190119738
    Abstract: In some embodiments, provided are methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components. In some embodiments, methods for nucleic acid amplification comprise a amplifying at least one polynucleotide onto a surface under isothermal amplification conditions, optionally in the presence of a polymer.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan M. ROTHBERG, Bin LI, Kai Qin LAO
  • Patent number: 10233488
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: March 19, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Bin Li, Kai Qin Lao, Jennifer O'Neil, Jennifer Kunkel, Kellie Haley, Rachel Kasinskas, Zhaochun Ma, Pius Brzoska
  • Patent number: 10113195
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 30, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20170067098
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Application
    Filed: September 26, 2016
    Publication date: March 9, 2017
    Inventors: Bin LI, Kai Qin LAO, Jennifer O'NEIL, Jennifer KUNKEL, Kellie HALEY, Rachel KASINSKAS, Zhaochun MA, Pius BRZOSKA
  • Patent number: 9476080
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: October 25, 2016
    Assignee: Life Technologies Corporation
    Inventors: Bin Li, Kai Qin Lao, Jennifer O'Neil, Jennifer Kunkel, Kellie Haley, Rachel Kasinskas, Zhaochun Ma, Pius Brzoska
  • Publication number: 20160272954
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: April 6, 2016
    Publication date: September 22, 2016
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO, Wolfgang HINZ
  • Patent number: 9371557
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 21, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 9334531
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: May 10, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 9309558
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: April 12, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Jennifer O'Neil, Rachel Kasinskas, Shiaw-Min Chen, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Patent number: 9309566
    Abstract: In some embodiments, the present teachings provide methods for paired end sequencing. In some embodiment, a polynucleotide template to be subjected to paired end sequencing comprises at least one cross linking moiety and at least one scissile moiety. In some embodiments, a paired end sequencing reaction comprises (a) a forward sequencing step, (b) a cleavage step, and (c) a reverse sequencing step. In some embodiments, a paired end sequencing reaction comprises (a) a forward sequencing step, (b) a cross-linking step, (c) a cleavage step, and (d) a reverse sequencing step.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 12, 2016
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Bin Li, Kai Qin Lao, Jennifer O'Neil, Jennifer Kunkel, Kellie Haley, Rachel Kasinskas, Zhaochun Ma, Pius Brzoska
  • Patent number: 9309557
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 12, 2016
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20160032375
    Abstract: In some embodiments, the present teachings provide methods for nucleic acid amplification, comprising forming a reaction mixture, and subjecting the reaction mixture to conditions suitable for nucleic acid amplification. In some embodiments, methods for nucleic acid amplification include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, methods for nucleic acid amplification include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the methods for nucleic acid amplification employ an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel. In some embodiments, methods for nucleic acid amplification can be conducted in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: July 1, 2015
    Publication date: February 4, 2016
    Inventors: Chieh-Yuan LI, David RUFF, Jennifer O'NEIL, Rachel KASINSKAS, Shiaw-Min CHEN, Jonathan ROTHBERG
  • Publication number: 20150275284
    Abstract: Novel methods of generating a localized population of immobilized clonal amplicons on a support are provided.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 1, 2015
    Inventors: Bin LI, Kai Qin LAO, Jennifer O'NEIL, Jennifer KUNKEL, Kellie HALEY, Rachel KASINSKAS, Zhaochun MA, Pius BRZOSKA
  • Publication number: 20140349968
    Abstract: The instant invention provides a method of treating a cancer selected from the group consisting of non-small cell lung cancer and breast cancer with an mTOR inhibitor and an ?v62 3 integrin antagonist, wherein the mTOR inhibitor is ridaforolimus, everolimus, temsirolimus or a combination thereof.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 27, 2014
    Applicants: ARIAD Pharmaceuticals, Inc., Merck
    Inventors: Jennifer O'Neil, Yair Benita, Shane Marine, Brian Haines