Patents by Inventor Jeremy B. Cox

Jeremy B. Cox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8849382
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various aspects for visualizing and manipulating display of the ECG signal data acquired via the present system, together with aspects of various ECG sensor configurations, are also disclosed.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: September 30, 2014
    Assignee: C. R. Bard, Inc.
    Inventors: Jeremy B. Cox, Christian W. Crook, Anthony K. Misener, Paul D. Morgan, Daniel R. Morris
  • Publication number: 20140107475
    Abstract: A guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system includes an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors may be associated with the probe. The system may include a medical device, such as a needle, separate from the probe, the medical device having a magnetic field associated therewith. The system may include a processor that uses data relating to the magnetic field sensed by the one or more sensors to determine a position and/or orientation of the medical device. The system may also include a display that shows an image of the internal body portion target taken by the ultrasound imaging probe and a depiction of the medical device positioned and/or oriented with respect to the image.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: C. R. BARD, INC.
    Inventors: Jeremy B. Cox, Jiaye Z. Jho, Robert N. Golden
  • Publication number: 20130338503
    Abstract: An ultrasound imaging device including the ability to determine when a component, such as a removable probe cap, is attached to a portion of an ultrasound probe. Such a cap is employed in one embodiment to act as a spacer component to provide a standoff for the probe head. Detection of probe cap attachment to the ultrasound probe enables the resultant ultrasound image to be adjusted automatically by the ultrasound imaging system. In one embodiment, an ultrasound imaging system comprises an ultrasound probe, a cap or other component that is attachable to the probe, and a component attachment detection system for detecting attachment of the component to the probe. Once the cap is detected, an aspect of an ultrasound image produced by the imaging system is modified, such as cropping the image to remove undesired portions of the cap, such as the spacer component.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Applicant: C. R. Bard, Inc.
    Inventors: Benjamin A. Cohen, Jeremy B. Cox, Jeanette E. Southard, Shayne Messerly, Jay A. Muse, Kevin W. Stinger
  • Publication number: 20130267912
    Abstract: A bi-directional valve assembly, including valves for use in closed-ended catheters or other elongate tubular devices, is disclosed. In one embodiment, a catheter assembly for insertion into a body of a patient is disclosed and comprises an elongate catheter tube including an outer wall that at least partially defines at least one lumen that extends between a proximal end and a closed distal end thereof. The catheter tube includes a valve assembly that in turn includes a linear slit valve defined through the outer wall of a distal segment of the catheter tube, and a deformation region. The deformation region includes a compliant segment disposed in the outer wall of the catheter tube and a thinned portion of the outer wall. The compliant segment and thinned portion of the deformation region cooperate to preferentially deform the outer wall and open the slit valve during aspiration through the catheter tube.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 10, 2013
    Inventors: Jeremy B. Cox, Daniel B. Blanchard, Mark A. Christensen
  • Publication number: 20130245434
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
    Type: Application
    Filed: May 8, 2013
    Publication date: September 19, 2013
    Applicant: C. R. BARD, INC.
    Inventors: Shayne Messerly, Jeremy B. Cox, Anthony K. Misener, Catherine C. Breiter, Ryan R. Lemon, Christian W. Crook, Matthew W. Bown, Eddie K. Burnside, Kelly J. Christian, Amir Orome, Jason R. Stats
  • Patent number: 8388541
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient'vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 5, 2013
    Assignee: C. R. Bard, Inc.
    Inventors: Shayne Messerly, Jeremy B. Cox, Anthony K. Misener, Catherine C. Breiter, Ryan R. Lemon, Christian W. Crook, Matthew W. Bown, Eddie K. Burnside, Kelly J. Christian, Amir Orome, Jason R. Stats
  • Publication number: 20120220854
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
    Type: Application
    Filed: May 11, 2012
    Publication date: August 30, 2012
    Applicant: C. R. BARD, INC.
    Inventors: Shayne Messerly, Jeremy B. Cox, Anthony K. Misener, Catherine C. Breiter, Ryan R. Lemon, Christian W. Crook, Matthew W. Bown, Eddie K. Burnside, Kelly J. Christian, Amir Orome, Jason R. Stats
  • Publication number: 20110313293
    Abstract: A probe cap for use with an ultrasound probe including a head portion and an acoustic surface is disclosed. In one embodiment, the probe cap includes a body that defines a cavity sized for releasably receiving the head portion of the probe therein. The probe cap body further defines a hole that is proximate the acoustic surface of the head portion. A compliant spacer component is disposed in the hole. The spacer component can include a hydrogel and provides an acoustic path between the acoustic surface and a tissue surface of a patient. The spacer component includes a skin contact surface that defines a concavity and is deformable against the tissue surface. Additional embodiments disclose various probe cap and accompanying needle guide designs for use in assisting a clinician with ultrasound probe use and needle insertion into a patient.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 22, 2011
    Applicant: C. R. Bard, Inc.
    Inventors: Eric W. Lindekugel, Jeremy B. Cox, Daniel B. Blanchard, Christian W. Crook, Eddie K. Burnside, Jeanette E. Southard, Kevin W. Stinger
  • Publication number: 20110295108
    Abstract: A guidance system for assisting with the insertion of a needle into a patient body is disclosed. The guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle. The system includes a processor that uses data relating to the sensed characteristic to determine a 3-D position of the needle. The system includes a display for depicting the position of the needle. The needle can include a donut-shaped magnet disposed about the needle cannula, or a removable stylet with a magnetic element and a strain gauge for detection of the needle distal tip.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 1, 2011
    Applicant: C.R. Bard, Inc.
    Inventors: Jeremy B. Cox, Jiaye Z. Jho, Robert N. Golden
  • Publication number: 20110275930
    Abstract: A system for identifying an attribute of an implanted medical device, such as an access port is disclosed. In one embodiment, the identification system comprises a marker included with the implanted medical device, wherein the marker relates to an attribute of the implanted medical device. An external detection device is also included, comprising a signal source that emits an incident electromagnetic signal for impingement on the marker of the implanted medical device, a detector that detects a return signal from the marker resulting from impingement of the incident electromagnetic signal, and a user interface for conveying information relating to the attribute based on detection of the return signal. In the case of an implantable access port, for instance, the described system enables information, such as the ability of the port to withstand power injection of fluids therethrough, to be ascertained even after the port has been subcutaneously implanted within the patient.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 10, 2011
    Applicant: C. R. BARD, INC.
    Inventors: Jiaye Z. Jho, Jeremy B. Cox
  • Publication number: 20110087107
    Abstract: A probe cap for use with an ultrasound probe including a head portion and an acoustic surface is disclosed. In one embodiment, the probe cap includes a body that defines a cavity sized for releasably receiving the head portion of the probe therein. The probe cap body further defines a hole that is proximate the acoustic surface of the head portion. A compliant spacer component is disposed in the hole. The spacer component can include a hydrogel and provides an acoustic path between the acoustic surface and a tissue surface of a patient. The spacer component includes a skin contact surface that defines a concavity and is deformable against the tissue surface.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 14, 2011
    Applicant: C.R. Bard, Inc.
    Inventors: Eric W. Lindekugel, Eddie K. Burnside, Jeremy B. Cox, Daniel B. Blanchard, Paul D. Morgan, Kevin W. Stinger
  • Publication number: 20110015533
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Stylets and catheters including various multiple bipolar and monopolar electrode configurations are also disclosed.
    Type: Application
    Filed: September 29, 2010
    Publication date: January 20, 2011
    Applicant: C.R. Bard, Inc.
    Inventors: Jeremy B. Cox, Anthony K. Misener
  • Publication number: 20100036227
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various aspects for visualizing and manipulating display of the ECG signal data acquired via the present system, together with aspects of various ECG sensor configurations, are also disclosed.
    Type: Application
    Filed: September 10, 2009
    Publication date: February 11, 2010
    Applicant: C. R. Bard, Inc.
    Inventors: Jeremy B. Cox, Christian W. Crook, Anthony K. Misener, Paul D. Morgan, Daniel R. Morris
  • Publication number: 20090234328
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various means for establishing a conductive pathway between a sterile field of the patient and a non-sterile field to enable passage of ECG signals from the catheter to the tip location sensor are also disclosed.
    Type: Application
    Filed: April 17, 2009
    Publication date: September 17, 2009
    Applicant: C.R. Bard, Inc.
    Inventors: Jeremy B. Cox, Anthony K. Misener, Catherine C. Breiter, Bret Hamatake, Eddie K. Burnside, Jason R. Stats, Amir Orome
  • Publication number: 20090156926
    Abstract: An integrated catheter placement system for accurately placing a catheter within a patient'vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
    Type: Application
    Filed: November 25, 2008
    Publication date: June 18, 2009
    Applicant: C.R. Bard, Inc.
    Inventors: Shayne MESSERLY, Jeremy B. Cox, Anthony K. Misener, Catherine C. Breiter, Ryan R. Lemon, Christian K. Crook, Matthew W. Bown, Eddie K. Burnside, Kelly J. Christian, Amir Orome, Jason R. Stats