Patents by Inventor Jerry D. Reiland

Jerry D. Reiland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937948
    Abstract: This disclosure is directed to techniques for identifying false detection of asystole in a cardiac electrogram that include determining whether at least one of a plurality of false asystole detection criteria are satisfied. In some examples, the plurality of false asystole detection criteria includes a first false asystole detection criterion including a reduced amplitude threshold for detecting cardiac depolarizations in the cardiac electrogram, and a second false asystole detection criterion for detecting decaying noise in the cardiac electrogram.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: March 26, 2024
    Assignee: Medtronic, Inc.
    Inventors: Ya-Jian Cheng, Jerry D. Reiland
  • Publication number: 20240065607
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 29, 2024
    Inventors: Shantanu Sarkar, Michael Hudziak, Jerry D. Reiland, Erin Reisfeld
  • Publication number: 20230364435
    Abstract: Techniques for switching an implantable medical device (IMD) from a first mode to a second mode in relation to signals obtained from internal sensors are described. The internal sensors may include a temperature sensor a biosensor and other sensors. In some examples, processing circuitry of the IMD may make a first preliminary determination that the IMD is implanted based on a first signal from one of the sensors. In response to the first preliminary determination being that the IMD has changed status, the processing circuitry may make a second preliminary determination that the IMD based on a second signal from the biosensor or some other sensor. The processing circuitry may switch the IMD from a first mode to a second mode based on both the first preliminary determination and the second preliminary determination being that the IMD has changed status.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Robert M. Ecker, Matthew P. Hanly, Jerry D. Reiland, Hyun J. Yoon, Jon E. Thissen, Gary J. Pauly, Michael B. Terry, Ryan D. Wyszynski, Charles R. Gordon
  • Patent number: 11806154
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: November 7, 2023
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Michael L Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20230102092
    Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan D. Wyszynski
  • Publication number: 20230059224
    Abstract: Techniques for switching an implantable medical device (IMD) from a first mode to a second mode in relation to signals obtained from internal sensors are described. The internal sensors may include a temperature sensor and a biosensor. In some examples, processing circuitry of the IMD may make a first preliminary determination that the IMD is implanted based on a first signal from the temperature sensor. In response to the first preliminary determination being that the IMD is implanted, the processing circuitry may make a second preliminary determination that the IMD is implanted based on a second signal from the biosensor. The processing circuitry may switch the IMD from a first mode to a second mode based on both the first preliminary determination and the second preliminary determination being that the IMD is implanted.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 23, 2023
    Inventors: Robert M. Ecker, Matthew P. Hanly, Charles R. Gordon, Gary J. Pauly, Michael B. Terry, Jerry D. Reiland, Hyun J. Yoon, Ryan D. Wyszynski, Jon E. Thissen
  • Patent number: 11517242
    Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: December 6, 2022
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
  • Patent number: 11464985
    Abstract: Techniques for switching an implantable medical device (IMD) from a first mode to a second mode in relation to signals obtained from internal sensors are described. The internal sensors may include a temperature sensor and a biosensor. In some examples, processing circuitry of the IMD may make a first preliminary determination that the IMD is implanted based on a first signal from the temperature sensor. In response to the first preliminary determination being that the IMD is implanted, the processing circuitry may make a second preliminary determination that the IMD is implanted based on a second signal from the biosensor. The processing circuitry may switch the IMD from a first mode to a second mode based on both the first preliminary determination and the second preliminary determination being that the IMD is implanted.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: October 11, 2022
    Assignee: Medtronic, Inc.
    Inventors: Robert M. Ecker, Matthew P. Hanly, Charles R. Gordon, Gary J. Pauly, Michael B. Terry, Jerry D. Reiland, Hyun J. Yoon, Ryan D. Wyszynski, Jon E. Thissen
  • Patent number: 11400298
    Abstract: Techniques are disclosed for using a rate of wireless telemetry of an implantable medical device (IMD) to estimate a remaining longevity of a power source of the IMD. For example, the IMD sets a timer indicative of a remaining power capacity of the power source until a recommended replacement time (RRT) threshold. The IMD determines a power consumption of the IMD due to telemetry and updates, based on the power consumption of the IMD due to telemetry, the timer indicative of the remaining power capacity of the power source. The IMD determines, based on expiration of the timer indicative of the remaining power capacity of the power source, that the power source has reached the RRT threshold. In some examples, the IMD may output, to an external device and for display to a user, an indication that the power source has reached the RRT threshold.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: August 2, 2022
    Assignee: Medtronic, Inc.
    Inventors: Matthew J. Hoffman, Matthew P. Hanly, Evan S. Johnson, Gary J. Pauly, Jerry D. Reiland, Melani G. Sullivan, Ryan D. Wyszynski, Hyun J. Yoon
  • Publication number: 20220071545
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20220031184
    Abstract: This disclosure is directed to devices, systems, and techniques for dynamically adjusting a bio impedance measurement range. An example device includes a plurality of electrodes. The device also includes sensing circuitry configured to sense a bio impedance and processing circuitry. The processing circuitry is configured to apply an excitation signal to the sensing circuitry and, based on the application of the excitation signal, determine a sensed bio impedance value within a bio impedance measurement range. The processing circuitry is also configured to determine whether the sensed bio impedance value is within a predetermined portion of the bio impedance measurement range for a predetermined period of time and based on the sensed bio impedance value being within the predetermined portion of the bio impedance measurement range for the predetermined period of time, adjust the excitation signal.
    Type: Application
    Filed: July 20, 2021
    Publication date: February 3, 2022
    Inventors: Hyun J. Yoon, Jon E. Thissen, Jerry D. Reiland, Ashley L. Galarneau
  • Publication number: 20210370076
    Abstract: Techniques for switching an implantable medical device (IMD) from a first mode to a second mode in relation to signals obtained from internal sensors are described. The internal sensors may include a temperature sensor and a biosensor. In some examples, processing circuitry of the IMD may make a first preliminary determination that the IMD is implanted based on a first signal from the temperature sensor. In response to the first preliminary determination being that the IMD is implanted, the processing circuitry may make a second preliminary determination that the IMD is implanted based on a second signal from the biosensor. The processing circuitry may switch the IMD from a first mode to a second mode based on both the first preliminary determination and the second preliminary determination being that the IMD is implanted.
    Type: Application
    Filed: July 21, 2020
    Publication date: December 2, 2021
    Inventors: Robert M. Ecker, Matthew P. Hanly, Charles R. Gordon, Gary J. Pauly, Michael B. Terry, Jerry D. Reiland, Hyun J. Yoon, Ryan D. Wyszynski, Jon E. Thissen
  • Patent number: 11172863
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: November 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20210345969
    Abstract: This disclosure is directed to techniques for identifying false detection of asystole in a cardiac electrogram that include determining whether at least one of a plurality of false asystole detection criteria are satisfied. In some examples, the plurality of false asystole detection criteria includes a first false asystole detection criterion including a reduced amplitude threshold for detecting cardiac depolarizations in the cardiac electrogram, and a second false asystole detection criterion for detecting decaying noise in the cardiac electrogram.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 11, 2021
    Inventors: Ya-Jian Cheng, Jerry D. Reiland
  • Publication number: 20210339028
    Abstract: Techniques are disclosed for using a rate of wireless telemetry of an implantable medical device (IMD) to estimate a remaining longevity of a power source of the IMD. For example, the IMD sets a timer indicative of a remaining power capacity of the power source until a recommended replacement time (RRT) threshold. The IMD determines a power consumption of the IMD due to telemetry and updates, based on the power consumption of the IMD due to telemetry, the timer indicative of the remaining power capacity of the power source. The IMD determines, based on expiration of the timer indicative of the remaining power capacity of the power source, that the power source has reached the RRT threshold. In some examples, the IMD may output, to an external device and for display to a user, an indication that the power source has reached the RRT threshold.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 4, 2021
    Inventors: Matthew J. Hoffman, Matthew P. Hanly, Evan S. Johnson, Gary J. Pauly, Jerry D. Reiland, Melani G. Sullivan, Ryan D. Wyszynski, Hyun J. Yoon
  • Publication number: 20210267528
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 2, 2021
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Patent number: 11071500
    Abstract: This disclosure is directed to techniques for identifying false detection of asystole in a cardiac electrogram that include determining whether at least one of a plurality of false asystole detection criteria are satisfied. In some examples, the plurality of false asystole detection criteria includes a first false asystole detection criterion including a reduced amplitude threshold for detecting cardiac depolarizations in the cardiac electrogram, and a second false asystole detection criterion for detecting decaying noise in the cardiac electrogram.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: July 27, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ya-Jian Cheng, Jerry D. Reiland
  • Publication number: 20210093254
    Abstract: Techniques for determining a likeliness that a patient may incur an adverse health event are described. An example technique may include utilizing a probability model that uses as evidence nodes various diagnostic states of physiological parameters, which may include one or more subcutaneous impedance parameters. The probability model may include a Bayesian Network that determines a posterior probability of the adverse health event occurring within a predetermined period of time.
    Type: Application
    Filed: September 15, 2020
    Publication date: April 1, 2021
    Inventors: Shantanu Sarkar, Jodi L. Redemske, Val D. Eisele, III, Eduardo N. Warman, John E. Burnes, Jerry D. Reiland, Brian B. Lee, Todd M. Zielinski, Matthew T Reinke
  • Publication number: 20200397308
    Abstract: This disclosure is directed to devices, systems, and techniques for identifying a respiration rate based on an impedance signal. In some examples, a medical device system includes a medical device including a plurality of electrodes. The medical device is configured to perform, using the plurality of electrodes, an impedance measurement to collect a set of impedance values, where the set of impedance values is indicative of a respiration pattern of a patient. Additionally, the medical device system includes processing circuitry configured to identify a set of positive zero crossings based on the set of impedance values, identify a set of negative zero crossings based on the set of impedance values, and determine, for the impedance measurement, a value of a respiration metric using both the set of negative zero crossings and the set of positive zero crossings.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 24, 2020
    Inventors: Shantanu Sarkar, Eric M. Christensen, Deborah Ann Jaye, Niranjan Chakravarthy, Geert Morren, Jerry D. Reiland
  • Publication number: 20200383597
    Abstract: Techniques for determining whether a ventricular depolarization is a premature ventricular contraction (PVC) depolarization may include processing circuitry of a medical system identifying an interval from a maximum slope point to a minimum slope point for each of a plurality of ventricular depolarizations and, for each of the plurality of ventricular depolarizations as a current ventricular depolarization, determining that the intervals from the maximum slope point to the minimum slope point for the current ventricular depolarization, a preceding adjacent ventricular depolarization of the plurality of ventricular depolarizations, and a subsequent adjacent ventricular depolarization of the plurality of ventricular depolarizations satisfy one or more slope criteria. The processing circuitry determines that the current ventricular depolarization is a PVC depolarization based on the intervals from the maximum slope point to the minimum slope point satisfying the one or more slope criteria.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Gautham Rajagopal, Michael L. Hudziak, Shantanu Sarkar, Gary Toering, Jerry D. Reiland, Yuying Chao, Stephanie Chen