Patents by Inventor Jhy-Jyi Sze

Jhy-Jyi Sze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901388
    Abstract: Various embodiments of the present application are directed towards a semiconductor-on-insulator (SOI) DoP image sensor and a method for forming the SOI DoP image sensor. In some embodiments, a semiconductor substrate comprises a floating node and a collector region. A photodetector is in the semiconductor substrate and is defined in part by a collector region. A transfer transistor is over the semiconductor substrate. The collector region and the floating node respectively define source/drain regions of the transfer transistor. A semiconductor mesa is over and spaced from the semiconductor substrate. A readout transistor is on and partially defined by the semiconductor mesa. The semiconductor mesa is between the readout transistor and the semiconductor substrate. A via extends from the floating node to a gate electrode of the readout transistor.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhy-Jyi Sze, Dun-Nian Yaung, Alexander Kalnitsky
  • Patent number: 11901393
    Abstract: The present disclosure provides a semiconductor structure, including a substrate including a first material, wherein the first material generates electrical signals from radiation within a first range of wavelengths, an image sensor element including a second material, wherein the second material generates electrical signals from radiation within a second range of wavelengths, the second range is different from first range, a transparent layer proximal to a light receiving surface of the image sensor element, wherein the transparent layer is transparent to radiation within the second range of wavelength, and an interconnect structure connected to a signal transmitting surface of the image sensor element.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang, Jung-I Lin
  • Publication number: 20240021643
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Application
    Filed: July 21, 2023
    Publication date: January 18, 2024
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Patent number: 11855237
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed on and/or in a silicon substrate. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Patent number: 11848345
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: December 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Lin Chen, Yi-Shin Chu, Yin-Kai Liao, Sin-Yi Jiang, Kuan-Chieh Huang, Jhy-Jyi Sze
  • Patent number: 11837613
    Abstract: A photovoltaic cell includes a germanium-containing well embedded in a single crystalline silicon substrate and extending to a proximal horizontal surface of the single crystalline silicon substrate, wherein germanium-containing well includes germanium at an atomic percentage greater than 50%. A silicon-containing capping structure is located on a top surface of the germanium-containing well and includes silicon at an atomic percentage greater than 42%. The silicon-containing capping structure prevents oxidation of the germanium-containing well. A photovoltaic junction may be formed within, or across, the trench by implanting dopants of a first conductivity type and dopants of a second conductivity type.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: December 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jyh-Ming Hung, Tzu-Jui Wang, Kuan-Chieh Huang, Jhy-Jyi Sze
  • Publication number: 20230387159
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Hsiang-Lin Chen, Yi-Shin Chu, Yin-Kai Liao, Sin-Yi Jiang, Kuan-Chieh Huang, Jhy-Jyi Sze
  • Publication number: 20230377957
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a capacitor structure. The method includes forming a capacitor dielectric layer over a lower electrode layer, and forming an upper electrode layer over the capacitor dielectric layer. The upper electrode layer is etched to define an upper electrode and to expose a part of the capacitor dielectric layer. A spacer structure is formed over horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and also along sidewalls of the upper electrode. The spacer structure is etched to remove the spacer structure from over the horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and to define a spacer. The capacitor dielectric layer and the lower electrode layer are etched according to the spacer to define a capacitor dielectric and a lower electrode.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 23, 2023
    Inventors: Hsuan-Han Tseng, Chun-Yuan Chen, Lu-Sheng Chou, Hsiao-Hui Tseng, Jhy-Jyi Sze
  • Publication number: 20230369360
    Abstract: A photovoltaic cell includes a germanium-containing well embedded in a single crystalline silicon substrate and extending to a proximal horizontal surface of the single crystalline silicon substrate, wherein germanium-containing well includes germanium at an atomic percentage greater than 50%. A silicon-containing capping structure is located on a top surface of the germanium-containing well and includes silicon at an atomic percentage greater than 42%. The silicon-containing capping structure prevents oxidation of the germanium-containing well. A photovoltaic junction may be formed within, or across, the trench by implanting dopants of a first conductivity type and dopants of a second conductivity type.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Jyh-Ming Hung, Tzu-Jui WANG, Kuan-Chieh HUANG, Jhy-Jyi SZE
  • Publication number: 20230352514
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip having a first image sensor element including a first doped region disposed within a substrate. The substrate comprises a first material and has a first surface opposite a second surface. A second image sensor element overlies the first image sensor element. The second image sensor element includes an active layer disposed in the substrate directly over the first doped region. The first doped region and the active layer are spaced vertically between the first and second surfaces of the substrate. The active layer comprises a second material different from the first material.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Inventor: Jhy-Jyi Sze
  • Publication number: 20230335572
    Abstract: The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes a semiconductor substrate having sidewalls that form one or more trenches. The one or more trenches are disposed along opposing sides of a photodiode and vertically extend from an upper surface of the semiconductor substrate to within the semiconductor substrate. A doped region is arranged along the upper surface of the semiconductor substrate and along opposing sides of the photodiode. A first dielectric lines the sidewalls of the semiconductor substrate and the upper surface of the semiconductor substrate. A second dielectric lines sidewalls and an upper surface of the first dielectric. The doped region has a width laterally between a side of the photodiode and a side of the first dielectric. The width of the doped region varyies at different heights along the side of the photodiode.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jhy-Jyi Sze, Shyh-Fann Ting, Tzu-Jui Wang, Yen-Ting Chiang, Yu-Jen Wang, Yuichiro Yamashita
  • Patent number: 11791357
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Patent number: 11742375
    Abstract: A method of forming an image sensor includes forming a first image sensor element within a substrate. The first image sensor element and the substrate respectively comprise a first material. A second image sensor element is formed within the substrate. Forming the second image sensor element includes forming an isolation layer over the first image sensor element. Further, a buffer layer is formed over the isolation layer and an active layer is formed over the buffer layer. The active layer comprises a second material different from the first material.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhy-Jyi Sze
  • Patent number: 11728366
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes an image sensor disposed within a substrate. The substrate has sidewalls and a horizontally extending surface defining one or more trenches extending from a first surface of the substrate to within the substrate. One or more isolation structures are arranged within the one or more trenches. A doped region is arranged within the substrate laterally between sidewalls of the one or more isolation structures and the image sensor and vertically between the image sensor and the first surface of the substrate. The doped region has a higher concentration of a first dopant type than an abutting part of the substrate that extends along opposing sides of the image sensor.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jhy-Jyi Sze, Shyh-Fann Ting, Tzu-Jui Wang, Yen-Ting Chiang, Yu-Jen Wang, Yuichiro Yamashita
  • Publication number: 20230253434
    Abstract: The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes a semiconductor substrate. One or more isolation structures are arranged within one or more trenches in the semiconductor substrate. The one or more trenches are disposed along opposing sides of a photo-diode region within the semiconductor substrate. The semiconductor substrate includes an undulating exterior having rounded corners arranged laterally between neighboring ones of a plurality of flat surfaces. The rounded corners and the plurality of flat surfaces forming a plurality of triangular shaped protrusions arranged between the one or more isolation structures, as viewed along a cross-sectional view.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 10, 2023
    Inventors: Tung-Ting Wu, Jhy-Jyi Sze, Yimin Huang
  • Patent number: 11705474
    Abstract: The problem of reducing noise in image sensing devices, especially NIR detectors, is solved by providing ground connections for the reflectors. The reflectors may be grounded through vias that couple the reflectors to grounded areas of the substrate. The grounded areas of the substrate may be P+ doped areas formed proximate the surface of the substrate. In particular, the P+ doped areas may be parts of photodiodes. Alternatively, the reflectors may be grounded through a metal interconnect structure formed over the front side of the substrate.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ting Chiang, Ching-Chun Wang, Dun-Nian Yaung, Jen-Cheng Liu, Jhy-Jyi Sze, Shyh-Fann Ting, Yimin Huang
  • Patent number: 11699718
    Abstract: A BSI image sensor includes a substrate including a front side and a back side opposite to the front side, a pixel sensor disposed in the substrate, and a color filter disposed over the pixel sensor. The pixel sensor includes a plurality of first micro structures disposed over the back side of the substrate. The color filter includes a plurality of second micro structures disposed over the back side of the substrate. The first micro structures are arranged symmetrically to a first axial, and the second micro structures are arranged symmetrically to a second axial.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-Chieh Chiang, Keng-Yu Chou, Chun-Hao Chuang, Wen-Hau Wu, Jhy-Jyi Sze, Chien-Hsien Tseng, Kazuaki Hashimoto
  • Patent number: 11670663
    Abstract: The present disclosure, in some embodiments, relates to an image sensing integrated chip. The image sensing integrated chip includes a semiconductor substrate having sidewalls defining one or more trenches on opposing sides of a region of the semiconductor substrate. One or more dielectrics are disposed within the one or more trenches. The semiconductor substrate has a plurality of flat surfaces arranged between the one or more trenches. Adjacent ones of the plurality of flat surfaces define a plurality of triangular shaped protrusions and alternative ones of the plurality of flat surfaces are substantially parallel to one another, as viewed along a cross-sectional view.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Ting Wu, Jhy-Jyi Sze, Yimin Huang
  • Publication number: 20230109829
    Abstract: In some embodiments, the present disclosure relates to method for forming an image sensor integrated chip. The method includes forming a first photodetector region in a substrate and forming a second photodetector region in the substrate. A floating diffusion node is formed in the substrate between the first photodetector region and the second photodetector region. A pick-up well contact region is formed in the substrate. A first line intersects the floating diffusion node and the pick-up well contact region. One or more transistor gates are formed on the substrate. A second line that is perpendicular to the first line intersects the pick-up well contact region and the one or more transistor gates.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 13, 2023
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 11600737
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang