Patents by Inventor Ji Hao Liang

Ji Hao Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9735544
    Abstract: A surface emitting laser element includes: a semiconductor structure layer interposed between a first multi-layer reflector and a second multi-layer reflector; an insulating current confinement layer that is formed on a semiconductor layer of a second conductivity type and includes a first through-hole with a transparent electrode; the second multi-layer reflector formed on the current confinement layer and the transparent electrode; a heat conducting layer that is formed on the second multi-layer reflector and includes a second through-hole disposed coaxially with the first through-hole in the current confinement layer and having a minimum opening diameter smaller than an opening diameter of the first through-hole; and an emission color converting portion that is formed above the second through-hole in the heat conducting layer and includes phosphor.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: August 15, 2017
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Komei Tazawa, Ji-Hao Liang
  • Publication number: 20170149213
    Abstract: A vertical cavity light emitting device includes: a first multilayer film reflector; a semiconductor structure layer that is formed on the first multilayer film reflector and includes a semiconductor layer of a first conductivity type, an active layer, and a semiconductor layer of a second conductivity type opposite to the first conductivity type; an insulating current confinement layer formed on the semiconductor layer of the second conductivity type; a through opening formed in the current confinement layer; a transparent electrode for covering the through opening and the current confinement layer, the transparent electrode being in contact with the semiconductor layer of the second conductivity type through the through opening; a second multilayer film reflector formed on the transparent electrode; and a mixed composition layer formed to be in contact with an edge of the through opening and in which the current confinement layer and the transparent electrode are mixed.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 25, 2017
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Komei TAZAWA, Ji-Hao LIANG, Seiichiro KOBAYASHI, Masaru TAKIZAWA, Keisuke NAKATA
  • Publication number: 20170125978
    Abstract: A surface emitting laser element includes: a semiconductor structure layer interposed between a first multi-layer reflector and a second multi-layer reflector; an insulating current confinement layer that is formed on a semiconductor layer of a second conductivity type and includes a first through-hole with a transparent electrode; the second multi-layer reflector formed on the current confinement layer and the transparent electrode; a heat conducting layer that is formed on the second multi-layer reflector and includes a second through-hole disposed coaxially with the first through-hole in the current confinement layer and having a minimum opening diameter smaller than an opening diameter of the first through-hole; and an emission color converting portion that is formed above the second through-hole in the heat conducting layer and includes phosphor.
    Type: Application
    Filed: October 21, 2016
    Publication date: May 4, 2017
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Komei TAZAWA, Ji-Hao LIANG
  • Publication number: 20170110851
    Abstract: A semiconductor light-emitting element includes a multilayer body including a first end surface and a second end surface which are opposed to each other, wherein a first semiconductor layer, a light emitting layer, and a second semiconductor layer are stacked; a pair of recesses that are formed on the second semiconductor layer, separated from the second end surface, and separated from each other in the direction parallel to the first and second end surfaces; a ridge portion that is a protrusion between the pair of recesses and extends along the direction perpendicular to the first and second end surfaces; a band-shaped electrode disposed on the ridge portion; and a light guide layer formed on the second semiconductor layer between the ridge portion and the second end surface and guides light from the light emitting layer.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Komei TAZAWA, Ji-Hao LIANG
  • Patent number: 9496456
    Abstract: A semiconductor light emitting element includes: a pit formation layer formed on the first semiconductor layer and having a pyramidal pit; and an active layer formed on the pit formation layer and having a flat portion and an embedded portion which is formed so as to embed the pit. The active layer has a multi-quantum well structure having a well layer and a barrier layer laminated alternately in which each well layer and each barrier layer lie one upon another. The flat portion has a flat well portion corresponding to the well layer. The embedded portion has an embedded well portion corresponding to the well layer. The embedded well portion has a ring portion which is formed in an interface with the flat well portion so as to surround the threading dislocation. The ring portion has a band gap smaller than that of the flat well portion.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: November 15, 2016
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Mitsuyasu Kumagai, Ji-Hao Liang
  • Patent number: 9368678
    Abstract: A semiconductor light emitting element includes: a pit formation layer formed on a first semiconductor layer and having a pyramidal pit; an active layer formed on the pit formation layer and having an embedded portion formed so as to embed the pit. The active layer has a multi-quantum well structure having at least one pair of well layer and barrier layer laminated alternately. The embedded portion has at least one embedded well portion corresponding to the well layer respectively and at least one embedded barrier portion corresponding to the barrier layer respectively. Each of the embedded well portion and the embedded barrier portion is configured such that a second apex angle of the embedded well portion is smaller than a first apex angle of the embedded barrier portion wherein the embedded well portion is subsequently formed on the embedded barrier portion.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: June 14, 2016
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Takayoshi Yamane, Ji-Hao Liang, Mitsuyasu Kumagai, Shunya Ide
  • Patent number: 9368679
    Abstract: A semiconductor light emitting element includes: a pit formation layer having a pyramidal pit caused by a threading dislocation generated in the first semiconductor layer; an active layer; and an electron blocking layer formed on the active layer to cover the recess portion. The active layer is formed on the pit formation layer and having an embedded portion formed so as to embed the pit and a recess portion formed on a surface of the embedded portion to correspond to the pit. The recess portion of the active layer has an apex formed at a position existing in a layered direction of the active layer within the active layer.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: June 14, 2016
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Takayoshi Yamane, Ji-Hao Liang
  • Publication number: 20160118537
    Abstract: A semiconductor light-emitting element comprises: a first semiconductor layer, an active layer having a multiple quantum well structure in which a plurality of well layers and a plurality of barrier layers are alternately layered, an electron block layer, and a second semiconductor layer. Among the barrier layers, an endmost barrier layer closest to the second semiconductor layer includes a first endmost barrier layer part and a second endmost barrier layer part formed on a side closer to the second semiconductor layer than the first endmost barrier layer part and having a larger band gap than that of the first endmost barrier layer part. The first endmost barrier layer part has a band gap that is larger than that of each of the well layers and is smaller than that of each barrier layer other than the endmost barrier layer.
    Type: Application
    Filed: October 8, 2015
    Publication date: April 28, 2016
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Mitsuyasu KUMAGAI, Ji-Hao LIANG
  • Publication number: 20160087146
    Abstract: A semiconductor light emitting element includes: a pit formation layer formed on a first semiconductor layer and having a pyramidal pit; an active layer formed on the pit formation layer and having an embedded portion formed so as to embed the pit. The active layer has a multi-quantum well structure having at least one pair of well layer and barrier layer laminated alternately. The embedded portion has at least one embedded well portion corresponding to the well layer respectively and at least one embedded barrier portion corresponding to the barrier layer respectively. Each of the embedded well portion and the embedded barrier portion is configured such that a second apex angle of the embedded well portion is smaller than a first apex angle of the embedded barrier portion wherein the embedded well portion is subsequently formed on the embedded barrier portion.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 24, 2016
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Takayoshi YAMANE, Ji-Hao LIANG, Mitsuyasu KUMAGAI, Shunya IDE
  • Publication number: 20160087145
    Abstract: A semiconductor light emitting element includes: a pit formation layer formed on the first semiconductor layer and having a pyramidal pit; and an active layer formed on the pit formation layer and having a flat portion and an embedded portion which is formed so as to embed the pit. The active layer has a multi-quantum well structure having a well layer and a barrier layer laminated alternately in which each well layer and each barrier layer lie one upon another. The flat portion has a flat well portion corresponding to the well layer. The embedded portion has an embedded well portion corresponding to the well layer. The embedded well portion has a ring portion which is formed in an interface with the flat well portion so as to surround the threading dislocation. The ring portion has a band gap smaller than that of the flat well portion.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 24, 2016
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Mitsuyasu KUMAGAI, Ji-Hao LIANG
  • Publication number: 20160087147
    Abstract: A semiconductor light emitting element includes: a pit formation layer having a pyramidal pit caused by a threading dislocation generated in the first semiconductor layer; an active layer; and an electron blocking layer formed on the active layer to cover the recess portion. The active layer is formed on the pit formation layer and having an embedded portion formed so as to embed the pit and a recess portion formed on a surface of the embedded portion to correspond to the pit. The recess portion of the active layer has an apex formed at a position existing in a layered direction of the active layer within the active layer.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 24, 2016
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Takayoshi YAMANE, Ji-Hao LIANG
  • Patent number: 9202998
    Abstract: A semiconductor light-emitting device, and a method for manufacturing the semiconductor light-emitting device, in which light propagating through a light-emitting layer and reaching an edge surface of a semiconductor film can be extracted to the exterior in an efficient manner. The semiconductor light-emitting device comprises a semiconductor film including a light-emitting layer made from a group III nitride semiconductor. The semiconductor film has a tapered edge surface inclined diagonally with respect to a light extraction surface. The light extraction surface has a relief structure comprising a plurality of protrusions having a shape originating from the crystal structure of the semiconductor film. The average size of the protrusions in a first region in the vicinity of an edge section of the light extraction surface is smaller than the average size of the protrusions in a second region.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: December 1, 2015
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang
  • Patent number: 9182103
    Abstract: In an exemplary embodiment, a laser light source device includes a laser light source that emits laser light from a laser emission aperture. The laser light source device also includes a condenser lens disposed in front of the laser light source in a laser emission direction to collect the laser light. The laser light source device also includes a fluorescent member disposed in front of the condenser lens in the laser emission direction to receive the laser light collected by the condenser lens and to emit light of a different wavelength from that of the laser light. The laser light source device also includes a light guide that forms a light path of laser light from the laser light source to the condenser lens.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 10, 2015
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Teruo Koike, Ji-Hao Liang
  • Publication number: 20150003100
    Abstract: To provide a technique capable of alleviating the sense of visual discomfort when light distribution areas are switched. A vehicle lamp configured to include a light source, wherein the light source comprises a plurality of light-emitting units respectively comprising a control terminal for controlling light emission and extinction, arranged along a first direction, and the plurality of light-emitting units increases in a width of a first direction in proportion to a distance away from a predetermined reference position toward both sides along the first direction, with the width of a light-emitting unit corresponding to the predetermined reference position being the smallest.
    Type: Application
    Filed: June 17, 2014
    Publication date: January 1, 2015
    Inventors: Ji-Hao Liang, Teruo Koike
  • Patent number: 8816382
    Abstract: There is provided a semiconductor light-emitting element which has an electrode structural body including a connection electrode and a wiring electrode connected to the connection electrode, the wiring electrode stretching along a surface of a semiconductor layered body while being in partial contact with the surface of the semiconductor layered body exposed from an opening formed on the insulation layer. The area of a contact region between the wiring electrode and the semiconductor layered body increases, from a connection end which is connected to the connection electrode, along a direction in which the wiring electrode stretches.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: August 26, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Ji-Hao Liang, Ryosuke Kawai
  • Patent number: 8772808
    Abstract: A manufacturing method of a semiconductor light emitting element, includes forming sacrifice portions within the width of street portions in a semiconductor laminated body, and performing wet etching to remove the sacrifice portions together with their neighboring portions, thereby removing etching residuals in the streets.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 8, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang, Jiro Higashino
  • Patent number: 8664028
    Abstract: (a) On a growth substrate, a void-containing layer that is made of a group III nitride compound semiconductor and contains voids is formed. (b) On the void-containing layer, an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids is formed. (c) On the n-type layer, an active layer made of a group III nitride compound semiconductor is formed. (d) On the active layer, a p-type layer made of a p-type group III nitride compound semiconductor is formed. (e) A support substrate is bonded above the p-type layer. (f) The growth substrate is peeled off at the boundary where the voids are produced. In the above step (a) or (b), the supply of at least part of the materials that form the layer is decreased, while heating, before the voids are closed.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 4, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang
  • Patent number: 8658440
    Abstract: A nitride semiconductor light emitting device is formed by: forming a resist pattern on a first nitride semiconductor layer formed on a substrate, the resist pattern having a region whose inclination angle relative to a substrate surface changes smoothly as viewed in a cross section perpendicular to the substrate surface; etching the substrate by using the resist pattern as a mask to transfer the resist pattern to the first nitride semiconductor layer; and forming an light emitting layer on the patterned first nitride semiconductor layer. The nitride semiconductor light emitting device can emit near-white light or have a wavelength range generally equivalent to or near visible light range.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 25, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Ji-Hao Liang, Masahiko Tsuchiya, Takako Chinone, Masataka Kajikawa
  • Patent number: 8530256
    Abstract: (a) Forming on a growth substrate a void-containing layer that is made of a group III nitride compound semiconductor and contains voids. (b) Forming on the void-containing layer an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids. (c) Forming on the n-type layer an active layer made of a group III nitride compound semiconductor. (d) Forming on the active layer a p-type layer made of a p-type group III nitride compound semiconductor. (e) Bonding a support substrate above the p-type layer. (f) Peeling off the growth substrate at the boundary where the void are produced. (g) Planarizing the n-type layer. Step (b) comprises (b1) forming part of the n-type layer under conditions where horizontal growth is relatively weak and (b2) forming the remaining part of the n-type layer under conditions where horizontal growth is relatively strong.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 10, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang, Takako Chinone
  • Patent number: 8467633
    Abstract: A wavelength conversion structure includes a light guide formed of a light-transmissive member having a laser light incident port that allows the laser light to be introduced and a phosphor-containing layer that covers at least part of the surface of the light guide. The light guide has a light diffusing structure having asperities and a light reflecting film. The asperities are formed over the surface of the light guide except a laser light incident surface having the laser light incident port. The light reflecting film is formed over the surface of the light guide along the asperities except the laser light incident port and the portion covered with the phosphor-containing layer.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 18, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Ji-Hao Liang, Teruo Koike