Patents by Inventor Jiangtao Hu

Jiangtao Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11493926
    Abstract: In one embodiment, a system generates a plurality of driving scenarios to train a reinforcement learning (RL) agent and replays each of the driving scenarios to train the RL agent by: applying a RL algorithm to an initial state of a driving scenario to determine a number of control actions from a number of discretized control/action options for the ADV to advance to a number of trajectory states which are based on a number of discretized trajectory state options, determining a reward prediction by the RL algorithm for each of the controls/actions, determining a judgment score for the trajectory states, and updating the RL agent based on the judgment score.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: November 8, 2022
    Assignee: BAIDU USA LLC
    Inventors: Runxin He, Jinyun Zhou, Qi Luo, Shiyu Song, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Patent number: 11492008
    Abstract: Systems and methods are disclosed for reducing second order dynamics delays in a control subsystem (e.g. throttle, braking, or steering) in an autonomous driving vehicle (ADV). A control input is received from an ADV perception and planning system. The control input is translated in a control command to a control subsystem of the ADV. A reference actuation output is obtained from a storage of the ADV. The reference actuation output is a smoothed output that accounts for second order actuation dynamic delays attributable to the control subsystem actuator. Based on a difference between the control input and the reference actuation output, adaptive gains are determined and applied to the input control signal to reduce error between the control output and the reference actuation output.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: November 8, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Shu Jiang, Jinghao Miao, Jiangtao Hu, Jingao Wang, Jinyun Zhou, Jiaxuan Xu
  • Patent number: 11485353
    Abstract: In one embodiment, a computer-implemented method of autonomously parking an autonomous driving vehicle, includes generating environment descriptor data describing a driving environment surrounding the autonomous driving vehicle (ADV), including identifying a parking space and one or more obstacles within a predetermined proximity of the ADV, generating a parking trajectory of the ADV based on the environment descriptor data to autonomously park the ADV into the parking space, including optimizing the parking trajectory in view of the one or more obstacles, segmenting the parking trajectory into one or more trajectory segments based on a vehicle state of the ADV, and controlling the ADV according to the one or more trajectory segments of the parking trajectory to autonomously park the ADV into the parking space without collision with the one or more obstacles.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 1, 2022
    Assignee: BAIDU USA LLC
    Inventors: Jinyun Zhou, Runxin He, Qi Luo, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Patent number: 11467591
    Abstract: In one embodiment, a system uses an actor-critic reinforcement learning model to generate a trajectory for an autonomous driving vehicle (ADV) in an open space. The system perceives an environment surrounding an ADV. The system applies a RL algorithm to an initial state of a planning trajectory based on the perceived environment to determine a plurality of controls for the ADV to advance to a plurality of trajectory states based on map and vehicle control information for the ADV. The system determines a reward prediction by the RL algorithm for each of the plurality of controls in view of a target destination state. The system generates a first trajectory from the trajectory states by maximizing the reward predictions to control the ADV autonomously according to the first trajectory.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 11, 2022
    Assignee: BAIDU USA LLC
    Inventors: Runxin He, Jinyun Zhou, Qi Luo, Shiyu Song, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Publication number: 20220315046
    Abstract: In one embodiment, simulation of an autonomous driving vehicle (ADV) includes capturing first data that includes a control command output by an autonomous vehicle controller of the ADV, and capturing second data that includes the control command being implemented at a control unit of the ADV. The control command, for example, a steering command, a braking command, or a throttle command, is implemented by the ADV to affect movement of the ADV. A latency model is determined based on comparing the first data with the second data, where the latency model defines time delay and/or amplitude difference between the first data and the second data. The latency model is applied in a virtual driving environment.
    Type: Application
    Filed: December 20, 2019
    Publication date: October 6, 2022
    Inventors: Shu JIANG, Qi LUO, Jinghao MIAO, Jiangtao HU, Yu WANG, Jiaxuan XU, Jinyun ZHOU, Kuang HU, Chao MA
  • Patent number: 11462060
    Abstract: An autonomous driving vehicle (ADV) receives instructions for a human test driver to drive the ADV in manual mode and to collect a specified amount of driving data for one or more specified driving categories. As the user drivers the ADV in manual mode, driving data corresponding to the one or more driving categories is logged. A user interface of the ADV displays the one or more driving categories that the human driver is instructed collect data upon, and a progress indicator for each of these categories as the human driving progresses. The driving data is uploaded to a server for machine learning. If the server machine learning achieves a threshold grading amount of the uploaded data to variables of a dynamic self-driving model, then the server generates an ADV self-driving model, and distributes the model to one or more ADVs that are navigated in the self-driving mode.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: October 4, 2022
    Assignee: BAIDU USA LLC
    Inventors: Shu Jiang, Qi Luo, Jinghao Miao, Jiangtao Hu, Weiman Lin, Jiaxuan Xu, Yu Wang, Jinyun Zhou, Runxin He
  • Patent number: 11453409
    Abstract: Systems and methods are disclosed for reducing second order dynamics delays in a control subsystem (e.g. throttle, braking, or steering) in an autonomous driving vehicle (ADV) and increasing control system bandwidth by accounting for time-latency in a control subsystem actuation system. A control input is received from an ADV's autonomous driving system. The control input is translated into a control command of the control subsystem of the ADV. A reference actuation output and a predicted actuation output are generated corresponding to a by-wire (“real”) actuation action for the control subsystem. A control error is determined between the reference actuation action and the by-wire actuation action. A predicted control error is determined between the predicted actuation action and the between the by-wire actuation action. Adaptive gains are determined and applied to the by-wire actuation action to generate a second by-wire actuation action.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: September 27, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Shu Jiang, Jinghao Miao, Jiangtao Hu, Jingao Wang, Jinyun Zhou, Jiaxuan Xu
  • Patent number: 11427211
    Abstract: According to some embodiments, described herein is a system and method for handling sensor failures in autonomous driving vehicles (ADV) that is navigating in a world coordination as an absolute coordination system. When the ADV encounters a sensor failure, but still has at least one camera working properly, the sensor failure handling system can switch the ADV from navigating in the world coordination to a local coordination, in which the ADV relies camera-based obstacle detection and lane mark detection to drive safely until human dis-engagement or until the ADV is parked along a road side.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 30, 2022
    Assignee: BAIDU USA LLC
    Inventors: Jiangtao Hu, Yifei Jiang, Dong Li, Liangliang Zhang, Jiaming Tao, Qi Luo, Xiangquan Xiao
  • Patent number: 11430466
    Abstract: Systems and methods for sound source detection and localization utilizing an autonomous driving vehicle (ADV) are disclosed. The method includes receiving audio data from a number of audio sensors mounted on the ADV. The audio data comprises sounds captured by the audio sensors and emitted by one or more sound sources. Based on the received audio data, the method further includes determining a number of sound source information. Each sound source information comprises a confidence score associated with an existence of a specific sound. The method further includes generating a data representation to report whether there exists the specific sound within the driving environment of the ADV. The data representation comprises the determined sound source information. The received audio data and the generated data representation are utilized to subsequently train a machine learning algorithm to recognize the specific sound source during autonomous driving of the ADV in real-time.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: August 30, 2022
    Assignee: BAIDU USA LLC
    Inventors: Hongyi Sun, Kecheng Xu, Qi Luo, Zejun Lin, Wei Wang, Wesley Reynolds, Jiangtao Hu, Jinghao Miao
  • Patent number: 11408640
    Abstract: Provided are a housing assembly and a water heater. The housing assembly includes a bottom plate assembly and an outer housing. The outer housing is provided with a hooking fitting portion, the bottom plate assembly includes: a base and a supporting portion, a crimping space for positioning the outer housing is formed between at least portion of the supporting portion and the base. The hooking fitting portion is hooked with the crimping space.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 9, 2022
    Assignees: GREE ELECTRIC APPLIANCES (WUHAN) CO., LTD, GREE ELECTRIC APPLIANCES, INC. OF ZHUHAI
    Inventors: Chuxin Hu, Wenyan Zhong, Guangyue Li, Ruchun Zhao, Jiangtao Song
  • Patent number: 11409284
    Abstract: In one embodiment, an open space model is generated for a system to plan trajectories for an ADV in an open space. The system perceives an environment surrounding an ADV including one or more obstacles. The system determines a target function for the open space model based on constraints for the one or more obstacles and map information. The system iteratively, performs a first quadratic programming (QP) optimization on the target function based on a first trajectory while fixing a first set of variables, and performs a second QP optimization on the target function based on a result of the first QP optimization while fixing a second set of variables. The system generates a second trajectory based on results of the first and the second QP optimizations to control the ADV autonomously according to the second trajectory.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 9, 2022
    Assignee: BAIDU USA LLC
    Inventors: Runxin He, Jinyun Zhou, Qi Luo, Shiyu Song, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Publication number: 20220219736
    Abstract: In one embodiment, an emergency vehicle detection system can be provided in the ADV travelling on a road to detect the presence of an emergency vehicle in a surrounding environment of the ADV using both audio data and visual data. The emergency vehicle detection system can use a trained neutral network to independently generate a detection result from the audio data, and use another trained network to independently generate another detection result from the visual data. The emergency vehicle detection system can fuse the two detection results to determine the position and moving direction of the emergency vehicle. The ADV can take appropriate actions in response to the position and moving direction of the emergency vehicle.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 14, 2022
    Inventors: Kecheng XU, Hongyi SUN, Qi LUO, Wei WANG, Zejun LIN, Wesley REYNOLDS, Feng LIU, Jiangtao HU, Jinghao MIAO
  • Publication number: 20220223037
    Abstract: According to various embodiments, systems, methods, and mediums for operating an autonomous driving vehicles (ADV) are described. The embodiments use a number of machine learning models to extract features individually from audio data and visual data captured by sensors mounted on the ADV, and then to fuse these extracted features to create a concatenated feature vectors. The concatenated feature vector is provided to a multiplayer perceptron (MLP) as input to generate a detection result related to the presence of an emergency vehicle in the surrounding environment. The detection result can be used by the ADV to take appropriate actions to comply with the local traffic rules.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 14, 2022
    Inventors: Kecheng XU, Hongyi SUN, Qi LUO, Wei WANG, Zejun LIN, Wesley REYNOLDS, Feng LIU, Jiangtao HU, Jinghao MIAO
  • Publication number: 20220223170
    Abstract: Systems and methods for sound source detection and localization utilizing an autonomous driving vehicle (ADV) are disclosed. The method includes receiving audio data from a number of audio sensors mounted on the ADV. The audio data comprises sounds captured by the audio sensors and emitted by one or more sound sources. Based on the received audio data, the method further includes determining a number of sound source information. Each sound source information comprises a confidence score associated with an existence of a specific sound. The method further includes generating a data representation to report whether there exists the specific sound within the driving environment of the ADV. The data representation comprises the determined sound source information. The received audio data and the generated data representation are utilized to subsequently train a machine learning algorithm to recognize the specific sound source during autonomous driving of the ADV in real-time.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 14, 2022
    Inventors: Hongyi SUN, Kecheng XU, Qi LUO, Zejun LIN, Wei WANG, Wesley REYNOLDS, Jiangtao HU, Jinghao MIAO
  • Patent number: 11377112
    Abstract: Generating control effort to control an autonomous driving vehicle (ADV) includes determining a direction (forward or reverse) in which the ADV is driving and selecting a driving model and a predictive model based upon the direction. In a forward direction, the driving model is a dynamic model, such as a “bicycle model,” and the predictive model is a look-ahead model. In a reverse direction, the driving model is a hybrid dynamic and kinematic model and the predictive model is a look-back model. Current and predicted lateral error and heading error are determined using the driving model and predictive model, respectively. A linear quadratic regulator (LQR) uses the current and predicted lateral error and heading errors to determine a first control effort An augmented control logic determines a second, additional, control effort, to determine a final control effort that is output to a control module to drive the ADV.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: July 5, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Shu Jiang, Jinghao Miao, Jiangtao Hu, Jingao Wang, Jinyun Zhou, Runxin He, Jiaxuan Xu
  • Patent number: 11378956
    Abstract: A perception module is configured to perceive a driving environment surrounding an autonomous driving vehicle (ADV) based on sensor data, and to generate perception information using various perception models or methods. The perception information describes the perceived driving environment. Based on the perception information, a planning module is configured to plan a trajectory representing a route or a path for a current planning cycle. The ADV is then controlled and driven based on the trajectory. In addition, the planning module determines a critical region (also referred to as a critical area) surrounding the ADV based on the trajectory in view of a current location or position of the ADV. The metadata describing the critical region is transmitted to the perception module via an application programming interface (API) to allow the perception module to generate perception information for a next planning cycle in view of the critical region.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: July 5, 2022
    Assignee: BAIDU USA LLC
    Inventors: Liangliang Zhang, Dong Li, Jiangtao Hu, Jiaming Tao, Yifei Jiang
  • Publication number: 20220207754
    Abstract: The present disclosure relates to a target tracking method, device, medium and apparatus, belongs to the technical field of computers, and can ensure the completeness of tracking. The target tracking method comprises performing object detection on all telephoto image frames captured by telephoto cameras in a multi-camera system, and constructing a detection point set based on object detection result for each frame of the telephoto image; selecting a target tracking point from each detection point set based on the starting tracking point; and connecting the selected target tracking points as a tracking sequence for the starting tracking point.
    Type: Application
    Filed: April 20, 2021
    Publication date: June 30, 2022
    Applicant: BOYAN TECHNOLOGIES (SHENZHEN) CO.,LTD
    Inventors: Yuxing HAN, Jiangtao WEN, Jisheng LI, Yubin HU
  • Patent number: 11360482
    Abstract: Via a first processing thread, an ADV is controlled according to a first trajectory that was generated based on a first reference line starting at a first location. Concurrently via a second processing thread, a second reference line is generated based on a second location of the first trajectory that the ADV will likely reach within a predetermined period of time in future. The predetermined period of time is greater than or equals to an amount of time to generate a reference line for the ADV. The second reference line is generated while the ADV is moving according to the first trajectory and before reaching the second location. Subsequently, in response to determining that the ADV is within a predetermined proximity of the second location, a second trajectory is generated based on the second reference line without having to calculate the second reference line at the second location.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: June 14, 2022
    Assignee: BAIDU USA LLC
    Inventors: Dong Li, Liangliang Zhang, Yajia Zhang, Yifei Jiang, Haoyang Fan, Jiangtao Hu
  • Patent number: 11352010
    Abstract: In one embodiment, an autonomous driving system of an autonomous driving vehicle perceives a driving environment surrounding the autonomous driving vehicle traveling along a path, including perceiving an obstacle in the driving environment. The system detects a vertical acceleration of the autonomous driving vehicle based on sensor data obtained from a sensor on the autonomous driving vehicle. The system further calibrates the perceived obstacle based on the vertical acceleration of the autonomous driving vehicle. The system then controls the autonomous driving vehicle to navigate through the driving environment in view of the calibrated perceived obstacle.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: June 7, 2022
    Assignee: BAIDU USA LLC
    Inventors: Shu Jiang, Qi Luo, Jinghao Miao, Jiangtao Hu, Jiaxuan Xu, Jingao Wang, Yu Wang, Jinyun Zhou, Runxin He
  • Patent number: 11338819
    Abstract: In one embodiment, a computer-implemented method for calibrating autonomous driving vehicles at a cloud-based server includes receiving, at the cloud-based server, one or more vehicle calibration requests from at least one user, each vehicle calibration request including calibration data for one or more vehicles and processing in parallel, by the cloud-based server, the one or more vehicle calibration requests for the at least one user to generate a calibration result for each vehicle. The method further includes sending, by the cloud-based server, the calibration result for each vehicle to the at least one user.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: May 24, 2022
    Assignee: BAIDU USA LLC
    Inventors: Shu Jiang, Qi Luo, Jinghao Miao, Jiangtao Hu, Xiangquan Xiao, Jiaxuan Xu, Yu Wang, Jinyun Zhou, Runxin He