Patents by Inventor Jiunn-Ru Jeffrey Huang

Jiunn-Ru Jeffrey Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7375378
    Abstract: A photovoltaic device comprising a photovoltaic cell is provided. The photovoltaic cell includes an emitter layer comprising a crystalline semiconductor material and a lightly doped crystalline substrate disposed adjacent the emitter layer. The lightly doped crystalline substrate and the emitter layer are oppositely doped. Further, the photovoltaic device includes a back surface passivated structure coupled to the photovoltaic cell. The structure includes a highly doped back surface field layer disposed adjacent the lightly doped crystalline substrate. The highly doped back surface field layer includes an amorphous or a microcrystalline semiconductor material, wherein the highly doped back surface field layer and the lightly doped crystalline substrate are similarly doped, and wherein a doping level of the highly doped back surface field layer is higher than a doping level of the lightly doped crystalline substrate.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 20, 2008
    Assignee: General Electric Company
    Inventors: Venkatesan Manivannan, Abasifreke Udo Ebong, Jiunn-Ru Jeffrey Huang, Thomas Paul Feist, James Neil Johnson
  • Publication number: 20060255340
    Abstract: A photovoltaic device comprising a photovoltaic cell is provided. The photovoltaic cell includes an emitter layer comprising a crystalline semiconductor material and a lightly doped crystalline substrate disposed adjacent the emitter layer. The lightly doped crystalline substrate and the emitter layer are oppositely doped. Further, the photovoltaic device includes a back surface passivated structure coupled to the photovoltaic cell. The structure includes a highly doped back surface field layer disposed adjacent the lightly doped crystalline substrate. The highly doped back surface field layer includes an amorphous or a microcrystalline semiconductor material, wherein the highly doped back surface field layer and the lightly doped crystalline substrate are similarly doped, and wherein a doping level of the highly doped back surface field layer is higher than a doping level of the lightly doped crystalline substrate.
    Type: Application
    Filed: May 12, 2005
    Publication date: November 16, 2006
    Inventors: Venkatesan Manivannan, Abasifreke Udo Ebong, Jiunn-Ru Jeffrey Huang, Thomas Paul Feist, James Neil Johnson
  • Patent number: 7078702
    Abstract: A flexible imager, for imaging a subject illuminated by incident radiation, includes a flexible substrate, a photosensor array disposed on the flexible substrate, and a scintillator. The scintillator is disposed so as to receive and absorb the incident radiation, is configured to convert the incident radiation to optical photons, and is optically coupled to the photosensor array. The photosensor array is configured to receive the optical photons and to generate an electrical signal corresponding to the optical photons. A digital imaging method for imaging subject includes conforming flexible digital imager to subject, the subject being positioned between flexible digital imager and a radiation source. The method further includes activating radiation source to expose the subject to radiation and collecting an image with the flexible digital imager.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: July 18, 2006
    Assignee: General Electric Company
    Inventors: Harry Israel Ringermacher, Clifford Bueno, Armin Horst Pfoh, Jiunn-Ru Jeffrey Huang
  • Publication number: 20040016886
    Abstract: A flexible imager, for imaging a subject illuminated by incident radiation, includes a flexible substrate, a photosensor array disposed on the flexible substrate, and a scintillator. The scintillator is disposed so as to receive and absorb the incident radiation, is configured to convert the incident radiation to optical photons, and is optically coupled to the photosensor array. The photosensor array is configured to receive the optical photons and to generate an electrical signal corresponding to the optical photons. A digital imaging method for imaging subject includes conforming flexible digital imager to subject, the subject being positioned between flexible digital imager and a radiation source. The method further includes activating radiation source to expose the subject to radiation and collecting an image with the flexible digital imager.
    Type: Application
    Filed: July 25, 2002
    Publication date: January 29, 2004
    Applicant: General Electric Company
    Inventors: Harry Israel Ringermacher, Clifford Bueno, Armin Horst Pfoh, Jiunn-Ru Jeffrey Huang