Patents by Inventor Joanne Yim

Joanne Yim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200220033
    Abstract: A silicon-containing substrate including a top surface which comprises nanostructuring having a plurality of rounded depressions with depths greater than 20 nm.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Joanne Yim, Jeffrey B. Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian P. Murphy, Lauren Magliozzi
  • Patent number: 10629759
    Abstract: In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: April 21, 2020
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Joanne Yim, Jeffrey B. Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian P. Murphy, Lauren Magliozzi
  • Publication number: 20190221683
    Abstract: A process is provided for contacting a nanostructured surface. The process may include (a) providing a substrate having a nanostructured material on a surface, (b) passivating the surface on which the nanostructured material is located, (c) screen printing onto the nanostructured surface and (d) firing the screen printing ink at a high temperature. In some embodiments, the nanostructured material compromises silicon. In some embodiments, the nanostructured material includes silicon nanowires. In some embodiments, the nanowires are around 150 nm, 250 nm, or 400 nm in length. In some embodiments, the nanowires have a diameter range between about 30 nm and about 200 nm. In some embodiments, the nanowires are tapered such that the base is larger than the tip. In some embodiments, the nanowires are tapered at an angle of about 1 degree, about 3 degrees, or about 10 degrees. In some embodiments, a high temperature can be approximately 700 C, 750 C, 800 C, or 850 C.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Michael Jura, Marcie R. Black, Jeffrey B. Miller, Joanne Yim, Joanne Forziati, Brian P. Murphy, Richard Chleboski
  • Patent number: 10269995
    Abstract: A process is provided for contacting a nanostructured surface. The process may include (a) providing a substrate having a nanostructured material on a surface, (b) passivating the surface on which the nanostructured material is located, (c) screen printing onto the nanostructured surface and (d) firing the screen printing ink at a high temperature. In some embodiments, the nanostructured material compromises silicon. In some embodiments, the nanostructured material includes silicon nanowires. In some embodiments, the nanowires are around 150 nm, 250 nm, or 400 nm in length. In some embodiments, the nanowires have a diameter range between about 30 nm and about 200 nm. In some embodiments, the nanowires are tapered such that the base is larger than the tip. In some embodiments, the nanowires are tapered at an angle of about 1 degree, about 3 degrees, or about 10 degrees. In some embodiments, a high temperature can be approximately 700 C, 750 C, 800 C, or 850 C.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 23, 2019
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Michael Jura, Marcie R. Black, Jeffrey B. Miller, Joanne Yim, Joanne Forziati, Brian P. Murphy, Richard Chleboski
  • Patent number: 10079322
    Abstract: In an embodiment of the disclosure, a structure is provided which comprises a silicon substrate and a plurality of necklaces of silicon nanowires which are in direct physical contact with a surface of the silicon substrate, wherein the necklaces cover an area of the silicon substrate.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: September 18, 2018
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Marcie R. Black, Jeffrey B. Miller, Michael Jura, Claire Kearns-McCoy, Joanne Yim, Brian P. Murphy
  • Publication number: 20180108791
    Abstract: In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 19, 2018
    Inventors: Joanne Yim, Jeffrey B. Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian P. Murphy, Lauren Magliozzi
  • Patent number: 9911878
    Abstract: In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 6, 2018
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Joanne Yim, Jeff Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian Murphy, Lauren Magliozzi
  • Patent number: 9783895
    Abstract: In an aspect of this disclosure, a method is provided comprising the steps of: (a) providing a silicon-containing substrate, (b) depositing a first metal on the substrate, (c) etching the substrate produced by step (b) using a first etch, and (d) etching the substrate produced by step (c) using a second etch, wherein the second etch is more aggressive towards the deposited metal than the first etch, wherein the result of step (d) comprises silicon nanowires. The method may further comprise, for example, steps (b1) subjecting the first metal to a treatment which causes it to agglomerate and (b2) depositing a second metal.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: October 10, 2017
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Joanne Yim, Jeffrey B. Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian P. Murphy, Adam Standley
  • Publication number: 20170278988
    Abstract: A process is provided for contacting a nanostructured surface. The process may include (a) providing a substrate having a nanostructured material on a surface, (b) passivating the surface on which the nanostructured material is located, (c) screen printing onto the nanostructured surface and (d) firing the screen printing ink at a high temperature. In some embodiments, the nanostructured material compromises silicon. In some embodiments, the nanostructured material includes silicon nanowires. In some embodiments, the nanowires are around 150 nm, 250 nm, or 400 nm in length. In some embodiments, the nanowires have a diameter range between about 30 nm and about 200 nm. In some embodiments, the nanowires are tapered such that the base is larger than the tip. In some embodiments, the nanowires are tapered at an angle of about 1 degree, about 3 degrees, or about 10 degrees. In some embodiments, a high temperature can be approximately 700 C, 750 C, 800 C, or 850 C.
    Type: Application
    Filed: June 14, 2017
    Publication date: September 28, 2017
    Inventors: Michael Jura, Marcie R. Black, Jeffrey B. Miller, Joanne Yim, Joanne Forziati, Brian P. Murphy, Richard Chleboski
  • Patent number: 9768331
    Abstract: A process is provided for contacting a nanostructured surface. The process may include (a) providing a substrate having a nanostructured material on a surface, (b) passivating the surface on which the nanostructured material is located, (c) screen printing onto the nanostructured surface and (d) firing the screen printing ink at a high temperature. In some embodiments, the nanostructured material compromises silicon. In some embodiments, the nanostructured material includes silicon nanowires. In some embodiments, the nanowires are around 150 nm, 250 nm, or 400 nm in length. In some embodiments, the nanowires have a diameter range between about 30 nm and about 200 nm. In some embodiments, the nanowires are tapered such that the base is larger than the tip. In some embodiments, the nanowires are tapered at an angle of about 1 degree, about 3 degrees, or about 10 degrees. In some embodiments, a high temperature can be approximately 700 C, 750 C, 800 C, or 850 C.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 19, 2017
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Michael Jura, Marcie R. Black, Jeffrey B. Miller, Joanne Yim, Joanne Forziati, Brian P. Murphy, Richard Chleboski
  • Publication number: 20170170346
    Abstract: In an embodiment of the disclosure, a structure is provided which comprises a silicon substrate and a plurality of necklaces of silicon nanowires which are in direct physical contact with a surface of the silicon substrate, wherein the necklaces cover an area of the silicon substrate.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Marcie R. Black, Jeffrey B. Miller, Michael Jura, Claire Kearns-McCoy, Joanne Yim, Brian P. Murphy
  • Publication number: 20160319441
    Abstract: In an aspect of this disclosure, a method is provided comprising the steps of: (a) providing a silicon-containing substrate, (b) depositing a first metal on the substrate, (c) etching the substrate produced by step (b) using a first etch, and (d) etching the substrate produced by step (c) using a second etch, wherein the second etch is more aggressive towards the deposited metal than the first etch, wherein the result of step (d) comprises silicon nanowires. The method may further comprise, for example, steps (b1) subjecting the first metal to a treatment which causes it to agglomerate and (b2) depositing a second metal.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Joanne Yim, Jeffrey B. Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian P. Murphy, Adam Standley
  • Patent number: 9449855
    Abstract: In an aspect of this disclosure, a method is provided comprising the steps of: (a) providing a silicon-containing substrate, (b) depositing a first metal on the substrate, (c) etching the substrate produced by step (b) using a first etch, and (d) etching the substrate produced by step (c) using a second etch, wherein the second etch is more aggressive towards the deposited metal than the first etch, wherein the result of step (d) comprises silicon nanowires. The method may further comprise, for example, steps (b1) subjecting the first metal to a treatment which causes it to agglomerate and (b2) depositing a second metal.
    Type: Grant
    Filed: July 13, 2014
    Date of Patent: September 20, 2016
    Assignee: ADVANCED SILICON GROUP, INC.
    Inventors: Joanne Yim, Jeffrey B. Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian P. Murphy, Adam Standley
  • Publication number: 20160218229
    Abstract: In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.
    Type: Application
    Filed: August 27, 2014
    Publication date: July 28, 2016
    Inventors: Joanne YIM, Jeff MILLER, Michael JURA, Marcie R. BLACK, Joanne FORZIATI, Brian MURPHY, Lauren MAGLIOZZI
  • Publication number: 20150380583
    Abstract: In an embodiment of the disclosure, a structure is provided which comprises a silicon substrate and a plurality of necklaces of silicon nanowires which are in direct physical contact with a surface of the silicon substrate, wherein the necklaces cover an area of the silicon substrate.
    Type: Application
    Filed: January 29, 2014
    Publication date: December 31, 2015
    Applicant: ADVANCED SILICON GROUP, INC.
    Inventors: Marcie R. Black, Jeff Miller, Michael Jura, Claire Kearns-McCoy, Joanne Yim, Brian P. Murphy
  • Publication number: 20150380740
    Abstract: In an aspect of this disclosure, a structure is provided comprising a metallic holding layer and an array of semiconductor nanowires. A portion of each semiconductor nanowire is embedded in the metallic holding layer. The embedded nanowires do not penetrate through the metallic holding layer. The metallic holding layer makes electrical contact to the semiconductor nanowires.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 31, 2015
    Inventors: Marcie R. Black, Michael Jura, Adam Standley, Joanne Yim, Jeff Miller, Brian Murphy
  • Publication number: 20150017802
    Abstract: In an aspect of this disclosure, a method is provided comprising the steps of: (a) providing a silicon-containing substrate, (b) depositing a first metal on the substrate, (c) etching the substrate produced by step (b) using a first etch, and (d) etching the substrate produced by step (c) using a second etch, wherein the second etch is more aggressive towards the deposited metal than the first etch, wherein the result of step (d) comprises silicon nanowires. The method may further comprise, for example, steps (b1) subjecting the first metal to a treatment which causes it to agglomerate and (b2) depositing a second metal.
    Type: Application
    Filed: July 13, 2014
    Publication date: January 15, 2015
    Applicant: Bandgap Engineering, Inc.
    Inventors: Joanne Yim, Jeff Miller, Michael Jura, Marcie R. Black, Joanne Forziati, Brian Murphy, Adam Standley
  • Publication number: 20140332068
    Abstract: A process is provided for contacting a nanostructured surface. The process may include (a) providing a substrate having a nanostructured material on a surface, (b) passivating the surface on which the nanostructured material is located, (c) screen printing onto the nanostructured surface and (d) firing the screen printing ink at a high temperature. In some embodiments, the nanostructured material compromises silicon. In some embodiments, the nanostructured material includes silicon nanowires. In some embodiments, the nanowires are around 150 nm, 250 nm, or 400 nm in length. In some embodiments, the nanowires have a diameter range between about 30 nm and about 200 nm. In some embodiments, the nanowires are tapered such that the base is larger than the tip. In some embodiments, the nanowires are tapered at an angle of about 1 degree, about 3 degrees, or about 10 degrees. In some embodiments, a high temperature can be approximately 700C, 750C, 800C, or 850C.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Applicant: BANDGAP ENGINEERING, INC.
    Inventors: Michael Jura, Marcie R. Black, Jeff Miller, Joanne Yim, Joanne Forziati, Brian Murphy, Richard Chleboski