Patents by Inventor Joel Meier Haynes

Joel Meier Haynes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10288291
    Abstract: An air-shielded fuel injection assembly for use in a combustion chamber of a turbine assembly. The air-shielded fuel injection assembly generally includes a fuel manifold including a plurality of fuel injection ports and an air manifold including a plurality of air injection ports. Each of the plurality of fuel injection ports is configured to introduce a fuel column into an annular cavity of a mixer assembly. Each of the plurality of air injection ports is configured to introduce an air curtain about an associated fuel injection column to minimize recirculation upstream of the fuel injection column and increase penetration of the fuel injection column into the cavity. Also disclosed are a mixer assembly and a turbine assembly including the air-shielded fuel injection assembly.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 14, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sarah Marie Monahan, Joel Meier Haynes, Narendra Digamber Joshi, David James Walker, Junwoo Lim, Krishna Kumar Venkatesan
  • Patent number: 10280760
    Abstract: A turbine assembly is provided. The turbine assembly includes a gas turbine engine including at least one hot gas path component formed at least partially from a ceramic matrix composite material. The turbine assembly also includes a treatment system positioned to receive a flow of exhaust gas from the gas turbine engine. The treatment system is configured to remove water from the flow of exhaust gas to form a flow of treated exhaust gas, and to channel the flow of treated exhaust gas towards the at least one hot gas path component. The at least one hot gas path component includes a plurality of cooling holes for channeling the flow of treated exhaust gas therethrough, such that a protective film is formed over the at least one hot gas path component.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 7, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Narendra Digamber Joshi, Christian Lee Vandervort, Krishan Lal Luthra, Ronald Scott Bunker, Joel Meier Haynes, Venkat Eswarlu Tangirala
  • Publication number: 20190003713
    Abstract: An air-shielded fuel injection assembly for use in a combustion chamber of a turbine assembly. The air-shielded fuel injection assembly generally includes a fuel manifold including a plurality of fuel injection ports and an air manifold including a plurality of air injection ports. Each of the plurality of fuel injection ports is configured to introduce a fuel column into an annular cavity of a mixer assembly. Each of the plurality of air injection ports is configured to introduce an air curtain about an associated fuel injection column to minimize recirculation upstream of the fuel injection column and increase penetration of the fuel injection column into the cavity. Also disclosed are a mixer assembly and a turbine assembly including the air-shielded fuel injection assembly.
    Type: Application
    Filed: September 16, 2018
    Publication date: January 3, 2019
    Inventors: Sarah Marie Monahan, Joel Meier Haynes, Narendra Digamber Joshi, David James Walker, Junwoo Lim, Krishna Kumar Venkatesan
  • Publication number: 20180179961
    Abstract: A turbine engine assembly including a rotating detonation combustor configured to combust a fuel-air mixture formed at least partially from a primary fuel including methane. The assembly also includes a fuel reformer configured to produce a secondary fuel, wherein the fuel reformer is further configured to channel a flow of secondary fuel towards the rotating detonation combustor such that the fuel-air mixture further includes the secondary fuel.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Thomas Michael Lavertu, Jr., Kapil Kumar Singh, Venkat Eswarlu Tangirala, Michael John Bowman, Joel Meier Haynes, Anthony John Dean
  • Patent number: 9771869
    Abstract: A fuel nozzle system for enabling a gas turbine to start and operate on low-Btu fuel includes a primary tip having primary fuel orifices and a primary fuel passage in fluid communication with the primary fuel orifices, and a fuel circuit capable of controlling flow rates of a first and second low-Btu fuel gases flowing into the fuel nozzle. The system is capable of operating at an ignition status, in which at least the first low-Btu fuel gas is fed to the primary fuel orifices and ignited to start the gas turbine, and a baseload status, in which at least the second low-Btu fuel gas is fired at baseload. The low-Btu fuel gas ignited at the ignition status has a content of the first low-Btu fuel gas higher than that of the low-Btu fuel gas fired at the baseload status. Methods for using the system are also provided.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: September 26, 2017
    Assignee: General Electric Company
    Inventors: Suhui Li, Joel Meier Haynes, Ping Yu, Wei Chen, David Leach, John Joseph Lipinski, Manuel Moises Cardenas, Jr., Wenjie Wu, Qingguo Zhang
  • Publication number: 20170089205
    Abstract: A turbine assembly is provided. The turbine assembly includes a gas turbine engine including at least one hot gas path component formed at least partially from a ceramic matrix composite material. The turbine assembly also includes a treatment system positioned to receive a flow of exhaust gas from the gas turbine engine. The treatment system is configured to remove water from the flow of exhaust gas to form a flow of treated exhaust gas, and to channel the flow of treated exhaust gas towards the at least one hot gas path component. The at least one hot gas path component includes a plurality of cooling holes for channeling the flow of treated exhaust gas therethrough, such that a protective film is formed over the at least one hot gas path component.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Narendra Digamber Joshi, Christian Lee Vandervort, Krishan Lal Luthra, Ronald Scott Bunker, Joel Meier Haynes, Venkat Eswarlu Tangirala
  • Patent number: 9599017
    Abstract: A turbine system and method of operating is provided. The system includes a compressor configured to generate a compressed low-oxygen air stream and a combustor configured to receive the compressed low-oxygen air stream and to combust a fuel stream to generate a post combustion gas stream. The turbine system also includes a turbine for receiving the post combustion gas stream to generate a low-NOx exhaust gas stream, a heat recovery system configured to receive the low-NOx exhaust gas stream and generate a cooled air stream and an auxiliary compressor configured to generate an oxygen and water vapor deficient cooled and compressed air stream. A portion of the oxygen and water vapor deficient cooled and compressed air stream is directed to the combustor to generate an Oxygen and H2O deficient film on exposed portions of the combustor, and another portion is directed to the turbine to provide a cooling flow.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 21, 2017
    Assignee: General Electric Company
    Inventors: Narendra Digamber Joshi, Joel Meier Haynes, Venkat Eswarlu Tangirala, Christian Lee Vandervort
  • Patent number: 9557050
    Abstract: A nozzle for assemblies and gas turbines is provided. The nozzle exhibits destabilized flame holding characteristics, i.e., the nozzle is unable to stabilize flame up to an equivalence ratio of about 0.65. As a result, flame heat release is delayed resulting in lower peak flame temperatures and correspondingly lower NOx levels. Flame stabilization capability is retained for higher equivalence ratios to support operation of the combustor in other regions of the load range.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 31, 2017
    Assignee: General Electric Company
    Inventors: Christian Lee Vandervort, Joel Meier Haynes
  • Patent number: 9551492
    Abstract: A gas turbine engine system includes a compressor, a combustor, and a turbine. The combustor is coupled to the compressor and disposed downstream of the compressor. The combustor includes a secondary combustor section coupled to a primary combustor section and disposed downstream of the primary combustor section. The combustor also includes a transition nozzle coupled to the secondary combustor section and disposed downstream of the secondary combustor section. The combustor further includes an injector coupled to the secondary combustor section, for injecting an air-fuel mixture to the secondary combustor section. The turbine is coupled to the combustor and disposed downstream of the transition nozzle; wherein the transition nozzle is oriented substantially tangential to the turbine.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: January 24, 2017
    Assignee: General Electric Company
    Inventors: Joel Meier Haynes, Narendra Digamber Joshi, Huijuan Chen
  • Publication number: 20160363319
    Abstract: An air-shielded fuel injection assembly for use in a combustion chamber of a turbine assembly. The air-shielded fuel injection assembly generally includes a fuel manifold including a plurality of fuel injection ports and an air manifold including a plurality of air injection ports. Each of the plurality of fuel injection ports is configured to introduce a fuel column into an annular cavity of a mixer assembly. Each of the plurality of air injection ports is configured to introduce an air curtain about an associated fuel injection column to minimize recirculation upstream of the fuel injection column and increase penetration of the fuel injection column into the cavity. Also disclosed are a mixer assembly and a turbine assembly including the air-shielded fuel injection assembly.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 15, 2016
    Inventors: Sarah Marie Monahan, Joel Meier Haynes, Narendra Digamber Joshi, David James Walker, Junwoo Lim, Krishna Kumar Venkatesan
  • Publication number: 20160265779
    Abstract: A fuel nozzle for a gas turbine includes a first radial swirler and a second radial swirler that introduce radial swirl to a flow of pressurized air; a chevron splitter between the two swirlers that directs the swirled flow of pressurized air to a main mixer passage to form a fuel-air mixture with fuel injected into the fuel nozzle; and a main mixer passage that receives the fuel-air mixture from the premixing chamber, and includes a converging throat that accelerates the fuel-air mixture. A method of mixing fuel and air for combustion in a gas turbine includes introducing a radial swirl to first and second flows of pressurized air; directing the swirled, pressurized air to a premixing chamber via a chevron splitter; mixing the swirled, pressurized air with a fuel jet injected into the premixing chamber to form a fuel-air mixture; and accelerating the fuel-air mixture in the main mixer passage having a converging throat.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 15, 2016
    Inventors: Joel Meier HAYNES, Narendra Digamber JOSHI, David James WALKER, Junwoo LIM, Sarah Marie MONAHAN, Krishnakumar VENKATESAN
  • Patent number: 9366189
    Abstract: In one embodiment, a system for reducing pressure oscillations within a gas turbine engine includes at least one fuel injector configured to inject fuel into a combustor. The system also includes a valve fluidly coupled to the at least one fuel injector. The system further includes a controller communicatively coupled to the valve. The controller is configured to cycle the valve between an open position and a closed position at a first frequency and a first duty cycle while a magnitude of pressure oscillations within the combustor is less than a threshold value, to cycle the valve between the open position and the closed position at a second frequency and a second duty cycle while the magnitude of the pressure oscillations within the combustor is greater than or equal to the threshold value, and to adjust the second frequency based on a measured frequency of the pressure oscillations.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 14, 2016
    Assignee: General Electric Company
    Inventors: Zekai Hong, Joel Meier Haynes, Keith Robert McManus, John Thomas Herbon
  • Patent number: 9353948
    Abstract: A combustor and a method for reducing a temperature gradient of a combustor component are provided. The combustor includes a coating applied to at least a portion thereof with the coating serving to alter the emissivity of the at least a portion to which it is applied. The method includes applying a coating on at least one of a combustor liner and a flow sleeve, wherein the coating alters the emissivity exhibited where applied.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 31, 2016
    Assignee: General Electric Company
    Inventors: Hendrik Pieter Jacobus de Bock, Mark Allan Hadley, Joel Meier Haynes, Brian Gene Brzek
  • Publication number: 20160061452
    Abstract: A corrugated cyclone mixer for use in a fuel injection assembly of a turbine engine. The corrugated cyclone mixer generally includes an annular housing including a flange portion and a lip portion configured downstream of the flange portion. The mixer further including a swirler disposed therein the annular housing for inducing a cyclonic motion in the corrugated cyclone mixer. The swirler is configured upstream of the flange portion and including a plurality of swirler vanes to produce a swirling air flow. The lip portion forming an outlet downstream of the swirler and including a plurality of corrugations at an aft end. The plurality of corrugations are configured to mix the swirling air flow and an injected fuel stream flowing therethrough the corrugated cyclone mixer. Additionally disclosed is a fuel injection assembly and a turbine assembly including the corrugated cyclone mixer.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 3, 2016
    Inventors: David James Walker, Joel Meier Haynes, Narendra Digamber Joshi, Junwoo Lim, Krishna Kumar Venkatesan, Sarah Marie Monahan
  • Publication number: 20160033132
    Abstract: A fuel injector to reduce NOx emissions in a combustor system. The fuel injector including a housing, at least one oxidizer flow path, extending axially through the fuel injector housing and defining therein one or more oxidizer flow paths for an oxidizer stream and a fuel manifold, extending axially through the fuel injector housing and defining therein one or more fuel flow path. The fuel manifold includes a forward portion and an aft portion including an aft face. A plurality of fuel injector outlets are defined in the aft portion, wherein the plurality of fuel injector outlets are configured to inject a fuel flow along a mid-plane of the fuel injector and away from a downstream wall. The fuel flow exiting the fuel manifold undergoes circumferential and radial mixing upon interaction with the oxidizer stream. Additionally disclosed is a combustor system including the fuel injector.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Inventors: Krishna Kumar Venkatesan, Joel Meier Haynes, Narendra Digamber Joshi, David James Walker, Junwoo Lim, Sarah Marie Monahan
  • Publication number: 20150167550
    Abstract: A system for processing a gas stream includes a gathering subsystem configured to collect the gas stream from a well-head and a gas conditioning subsystem for receiving the gas stream from the gathering subsystem and providing physical conditioning of the gas stream. The system includes one or more gas turbines configured to receive and combust a first flow of the conditioned gas stream from the gas conditioning subsystem and coupled with an electrical generator. The system includes one supplemental combustor configured to receive heated exhaust gases from the one or more gas turbines and a second flow of the conditioned gas stream from the gas conditioning subsystem, wherein the at least one supplemental combustor is configured to combust the second flow of the conditioned gas stream and the heated exhaust gases such that an exhaust gas stream flow from the at least one supplemental combustor meets emission regulation requirements.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: General Electric Company
    Inventors: Christian Lee Vandervort, Stephen Duane Sanborn, Joel Meier Haynes, Harish Radhakrishna Acharya, Ross Hartley Kenyon
  • Publication number: 20150000290
    Abstract: A turbine system and method of operating is provided. The system includes a compressor configured to generate a compressed low-oxygen air stream and a combustor configured to receive the compressed low-oxygen air stream and to combust a fuel stream to generate a post combustion gas stream. The turbine system also includes a turbine for receiving the post combustion gas stream to generate a low-NOx exhaust gas stream, a heat recovery system configured to receive the low-NOx exhaust gas stream and generate a cooled air stream and an auxiliary compressor configured to generate an oxygen and water vapor deficient cooled and compressed air stream. A portion of the oxygen and water vapor deficient cooled and compressed air stream is directed to the combustor to generate an Oxygen and H2O deficient film on exposed portions of the combustor, and another portion is directed to the turbine to provide a cooling flow.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Narendra Digamber Joshi, Joel Meier Haynes, Venkat Eswarlu Tangirala, Christian Lee Vandervort
  • Patent number: 8915086
    Abstract: A system for controlling combustion dynamics is provided. The system includes a combustor having a combustion chamber and an inlet for feeding a fuel-air mixture into the combustion chamber. The system also includes a dome plate at an upstream end of the combustion chamber. The system further includes a liner along a length of the combustion chamber. The system also includes an actuator configured to control one or more recirculating zones in the combustion chamber.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: December 23, 2014
    Assignee: General Electric Company
    Inventors: Chukwueloka Obiora Umeh, Joel Meier Haynes, Jeffrey Scott Goldmeer
  • Publication number: 20140283524
    Abstract: A fuel nozzle system for enabling a gas turbine to start and operate on low-Btu fuel includes a primary tip having primary fuel orifices and a primary fuel passage in fluid communication with the primary fuel orifices, and a fuel circuit capable of controlling flow rates of a first and second low-Btu fuel gases flowing into the fuel nozzle. The system is capable of operating at an ignition status, in which at least the first low-Btu fuel gas is fed to the primary fuel orifices and ignited to start the gas turbine, and a baseload status, in which at least the second low-Btu fuel gas is fired at baseload. The low-Btu fuel gas ignited at the ignition status has a content of the first low-Btu fuel gas higher than that of the low-Btu fuel gas fired at the baseload status. Methods for using the system are also provided.
    Type: Application
    Filed: January 14, 2014
    Publication date: September 25, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Suhui LI, Joel Meier HAYNES, Ping YU, Wei Chen, David Leach, John Joseph Lipinski, Manuel Moises Cardenas, JR., Wenjie Wu, Qingguo Zhang
  • Patent number: 8789375
    Abstract: A method of using a counterflow injection mechanism disposed in a combustion liner. The combustion liner including an outer casing comprising a plurality of openings formed along a length and configured as compressed air inlets, an inner casing having a closed rear end and a combustion outlet, and an air circulation path extending between and along the inner and outer casings. The counterflow injection mechanism includes a fuel-air injection mechanism having fuel and air passages extending through the air circulation path and leading to fuel and air injection openings disposed at an off-center position. The method includes injecting fuel and air from the injection mechanism toward the closed rear end of the inner casing in a direction counterflow to a generally lengthwise downstream flow of combustion products in a gas turbine combustor.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventor: Joel Meier Haynes