Patents by Inventor Johan Fredrik Naes

Johan Fredrik Naes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9541663
    Abstract: Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: January 10, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Publication number: 20160377757
    Abstract: Embodiments of systems and methods for storing and handling a plurality of autonomous seismic nodes are presented. The node handling and storage system may be coupled to a node deployment system that deploys and/or retrieves nodes from water from the back deck of a marine vessel. One embodiment of the node handling and storage system includes a plurality of portable containers that may be assembled in a variety of configurations based on the vessel and survey requirements. The containers are coupled to an autonomous or semi-autonomous node conveyor and/or transport system that moves the nodes between and within the containers for node cleaning, downloading, charging, servicing, and storage. The conveyor system may include a plurality of different transport devices and/or systems, such as rotatable conveyors, lateral conveyors, lift mechanisms, and elevators.
    Type: Application
    Filed: September 7, 2016
    Publication date: December 29, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Naes, Mariann Ervik, Leif Johan Larsen, Arve Jaatun, Ole-Fredrik Semb
  • Patent number: 9523780
    Abstract: Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 20, 2016
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Johan Fredrik Naes, Richard Edward Henman, Arne Henning Rokkan, Leif Johan Larsen, Mariann Ervik
  • Publication number: 20160349386
    Abstract: Systems, methods, and apparatuses related to coupling an autonomous seismic node to the seabed. In one embodiment, the node may comprise a plurality of holes on a bottom surface of the node and a plurality of openings on one or more sides and/or surfaces of the node. The bottom surface may comprise a coupling plate that is coupled to the node and/or coupled to a housing or casing that substantially surrounds a pressure node housing. The node may be configured to route water vertically from the bottom holes through the side openings and/or upper holes to decrease the potential of cavitation and fluidization of the seismic sediment and increase the seismic coupling of the node to the seabed.
    Type: Application
    Filed: May 25, 2016
    Publication date: December 1, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventor: Johan Fredrik Naes
  • Publication number: 20160341840
    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.
    Type: Application
    Filed: August 3, 2016
    Publication date: November 24, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Naes, Mariann Ervik, Ole-Fredrik Semb
  • Patent number: 9494700
    Abstract: Embodiments, including apparatuses, systems and methods, for attaching autonomous seismic nodes to a deployment cable. In an embodiment, an apparatus includes a seismic node having a direct attachment mechanism configured to directly attach the seismic node to a deployment line, the direct attachment mechanism being configurable between an open and/or unlocked position and a closed and/or locked position to release and retain the deployment line.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 15, 2016
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Richard Edward Henman, Johan Fredrik Næs, Arne Henning Rokkan, Mariann Ervik, Leif Johan Larsen, Fredrik Lund, Robert Schistad
  • Patent number: 9459366
    Abstract: Embodiments of systems and methods for storing and handling a plurality of autonomous seismic nodes are presented. The node handling and storage system may be coupled to a node deployment system that deploys and/or retrieves nodes from water from the back deck of a marine vessel. One embodiment of the node handling and storage system includes a plurality of portable containers that may be assembled in a variety of configurations based on the vessel and survey requirements. The containers are coupled to an autonomous or semi-autonomous node conveyor and/or transport system that moves the nodes between and within the containers for node cleaning, downloading, charging, servicing, and storage. The conveyor system may include a plurality of different transport devices and/or systems, such as rotatable conveyors, lateral conveyors, lift mechanisms, and elevators.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: October 4, 2016
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Naes, Mariann Ervik, Leif Johan Larsen, Arve Jaatun, Ole-Fredrik Semb
  • Patent number: 9429671
    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: August 30, 2016
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Naes, Mariann Ervik, Ole-Fredrik Semb
  • Publication number: 20160056645
    Abstract: Systems, methods, and apparatuses related to automatically and simultaneously charging a plurality of autonomous seismic nodes on a marine vessel before and/or after deployment to the seabed are disclosed. In one embodiment, a plurality of autonomous seismic nodes are simultaneously charged in a CSC approved ISO container. Each autonomous seismic node may comprise a plurality of power connectors, a plurality of rechargeable batteries, and a battery management system. Each of the nodes may be configured to couple with a charging system on the marine vessel, which may include a power source, one or more power/charging stations, one or more power connectors, and a network. In one embodiment, a storage rack in a container has a plurality of charging rails that the plurality of nodes can be placed upon for storage and charging. The node may have a plurality of power connectors disposed within a plurality of grooves that are configured to couple with the plurality of charging rails for simultaneous charging.
    Type: Application
    Filed: August 18, 2015
    Publication date: February 25, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Næs, Mariann Ervik, Leif Johan Larsen, Bjarne Isfeldt
  • Publication number: 20160041285
    Abstract: Containerized handling, deployment, and retrieval systems for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel are presented. The handling system may comprise a deployment system and a node storage and service system fully contained within a plurality of CSC approved ISO containers. Each of the components of the handling system may be located in a CSC approved ISO container for storage, operation, and transport. In one embodiment, the node deployment system is configured to retrieve and deploy autonomous seismic nodes from the back deck of a vessel. In one embodiment, the node storage and service system is configured to transfer nodes to and from the node deployment system for storage and servicing.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 11, 2016
    Applicant: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Publication number: 20160041283
    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Naes, Mariann Ervik, Ole-Fredrik Semb
  • Publication number: 20160041284
    Abstract: Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Applicant: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Publication number: 20160041280
    Abstract: Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 11, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Johan Fredrik Naes, Richard Edward Henman, Arne Henning Rokkan, Leif Johan Larsen, Mariann Ervik
  • Patent number: 7778114
    Abstract: A housing for a seismic sensing element (3) for use on the earth's surface comprises connecting means (5) for connecting the housing (3) to a support cable (2) so as to allow relative movement between the sensor housing (3) and the cable (2). This de-couples the sensor housing from the support cable, and improves the fidelity of the sensor. The connecting means (5) preferably comprises resilient connecting elements, to prevent the transmission of vibrations between the support cable and the sensor housing. The sensor housing (3) preferably has a flat base (1), so that there is good coupling between the sensor housing and the earth. Alternatively, the sensor housing can be fitted with a base member ((24a, 24b, 24c) that has at least one flat face (26, 26a, 26b, 26c).
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: August 17, 2010
    Assignee: WesternGeco L.L.C.
    Inventors: Nicolas Goujon, Kambiz Iranpour Mobarekeh, James Edward Martin, Johan Fredrik Naes, Rune Sindre Voldsbekk
  • Patent number: 7675821
    Abstract: An arrangement for the deployment of seismic sensor units, such as sensor nodes (24), on the seabed includes a frame structure that is adapted to carry a container (11) for containment of a data registration unit and additional auxiliary equipment for the sensor node. The arrangement has supports (12, 13) that can rest against the seabed, and an attachment means (17) for a lifting hook, for raising and lowering by means of a crane. There is a holder (20) for the sensor node (24) that can be positioned on the seabed and which is connected to the container through a signal cable (32). A releasable attachment means (22) holds the sensor node (24) in a downwardly extending position with respect to the supports (12, 13). The attachment means (22) is located with a horizontal distance from the container (11). A latch mechanism (25) for the attachment means (22) is adapted to release the sensor node (24).
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: March 9, 2010
    Assignee: Seabird Technologies AS
    Inventors: Eivind Berg, Johan Fredrik Näs, Thore Persson, Sven Magnc Storesund
  • Patent number: 7660193
    Abstract: A seismic cable (110) and a method for producing a seismic cable are disclosed. The seismic cable (110) comprises a sensor module (130); at least one lead (210) to or from the sensor module (130); a stress member (225) extending continuously through the sensor module (130); and a sheath (230) enclosing the leads (210) and the stress member (225), the sheath (230) terminating at each end of the sensor module (130), and at least one mechanical guide (240) in the sensor module (130) deflecting the stress member (230). The method comprises providing a cable core including a stress member (225) and a lead (210); enclosing the cable core in a sheath (230); providing an opening in the sheath (230); and assembling a sensor module (130) to the cable core over the opening such that the stress member (225) extends continuously through the sensor module (130).
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: February 9, 2010
    Assignee: WesternGeco L.L.C.
    Inventors: Nicolas Goujon, Johan Fredrik Naes, Rune Voldsbekk
  • Patent number: 7352654
    Abstract: The present invention provides a coupling device (300). The coupling device includes a collar (315, 405) defining an opening therethrough to receive a seismic sensor (305) such that the collar (315, 405) permits rotation about the seismic sensor (305) and at least three extensions (320, 410) from the collar, the extensions (320, 410) being capable of rotating with the collar (315, 405) such that any two of them may couple to the ground.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: April 1, 2008
    Assignee: WesternGeco, L.L.C.
    Inventors: Nicolas Goujon, Johan Fredrik Naes, Rune Voldsbekk, Lars Ranheim
  • Patent number: 7260024
    Abstract: A housing for a seismic sensing element (3) for use on the earth's surface comprises connecting means (5) for connecting the housing (3) to a support cable (2) so as to allow relative movement between the sensor housing (3) and the cable (2). This de-couples the sensor housing from the support cable, and improves the fidelity of the sensor. The connecting means (5) preferably comprises resilient connecting elements, to prevent the transmission of vibrations between the support cable and the sensor housing. The sensor housing (3) preferably has a flat base (1), so that there is good coupling between the sensor housing and the earth. Alternatively, the sensor housing can be fitted with a base member ((24a, 24b, 24c) that has at least one flat face (26, 26a, 26b, 26c).
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: August 21, 2007
    Assignee: Western Geco L.L.C.
    Inventors: Nicolas Goujon, Kambiz Iranpour Mobarekeh, James Edward Martin, Johan Fredrik Naes, Rune Sindre Voldsbekk
  • Patent number: 7224641
    Abstract: Arrangement for use for seismic surveys of geological formations in a seabed, where a plurality of such arrangements, which are provided with sensor units 26, are placed on the seabed for collecting pressure waves and shear waves reflected from the geological formations. There exist arrangements for transferring seismic data to a surface receiver placed on a vessel, an offshore installation, or an onshore installation. Each sensor unit 26 is held by a carrier 10 and is connected to a cylindrically skirt-shaped structure 19 adapted to be led down into the seabed, and each sensor unit 26 comprises at least one geophone. The carrier 10 comprises a holder 12 for the cylindrically skirt-shaped structure 19, which structure 19 shall penetrate down into the seabed, as this holder 12 is adapted to be moved between a lower position and an upper position, to be able to be mechanically released from the skirt-shaped structure 19.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: May 29, 2007
    Assignee: Seabed Geophysical AS
    Inventor: Johan Fredrik Näs
  • Patent number: 7066687
    Abstract: A method of performing a seismic survey of a hydrocarbon reservoir in the earth formations beneath a body of water includes deploying a seismic cable from a drum carried by a remotely operated vehicle on the seabed. The cable is deployed into a lined trench, which is formed either concurrently with cable deployment or during a previous survey, to ensure good repeatability of successive surveys of the reservoir, in order to enable changes in characteristics of the reservoir, eg due to depletion, to be monitored.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: June 27, 2006
    Inventors: James Martin, Philip Christie, Johan Fredrik Naes, Nicolas Goujon, Rune Voldsbekk