Patents by Inventor Johannes Riegl

Johannes Riegl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6989890
    Abstract: The present invention is directed to a system and method for taking up an object space using a laser range finder and a scanning device for scanning the object space. Furthermore, there is a passive opto-electronic receiver having an associated scanning device. The scanning device(s) scans the object space for the range finder and the passive receiver synchronously and in phase. To each image element, a spatial angle is assigned for identification. The passive receiver, comprises an array of transducer, elements where the image angle of an individual element of the array corresponds preferably to the beam angle of the laser beam. A memory includes one cell per image element so that with each distance measurement the individual elements of the array can be read and their signals stored in the cells of the memory.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: January 24, 2006
    Assignee: Riegel Laser Measurement Systems, GmbH
    Inventors: Johannes Riegl, Rainer Reichert, Andreas Ullrich
  • Patent number: 6879384
    Abstract: A process and an apparatus for measuring an object space using an opto-electronic range finder which operates according to a method of determining the time-of-flight of a signal comprise a first measuring step including transmitting optical transmitter signals in form of a beam of a predetermined first divergence angle, receiving optical signals reflected from an object and evaluating a distance value, while scanning the object space. After or before this first take-up step follows a second one wherein reference marks in the object space are taken up with a using an enlarged divergence angle so as to detect reliably the reference marks. The apparatus comprises, accordingly, appropriate devices for varying the divergence angle.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: April 12, 2005
    Assignee: Riegl Laser Measurement Systems, GmbH
    Inventors: Johannes Riegl, Rainer Reichert, Nikolaus Studnicka, Andreas Ullrich
  • Patent number: 6852975
    Abstract: The invention relates to a method for the recording of an object space with an opto-electronic distance sensor by a signal propagation time method, with a transmitter for transmitting optical signals, in particular those of a laser, and a receiver device for receiving optical signals, in particular laser radiation, which is reflected from objects located in the target space. The distance sensor is combined with a scanning device for deflecting the optical axes of the transmitter and receiver device, and it has an evaluation device, which from the propagation time or phase angle of the optical signal emitted ascertains distance values. Downstream of the scanning device, that is, out of the region oriented toward the distance sensor, part of the beam is split off from the beam path of the transmitter and/or receiver device and is directed to receiver diodes or the like, and from the corresponding signals, a pixel is ascertained and each pixel is assigned a distance value and a space angle.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: February 8, 2005
    Assignee: Riegl Laser Measurement Systems GmbH
    Inventors: Johannes Riegl, Andreas Ullrich, Wolfgang Zierlinger
  • Publication number: 20030123045
    Abstract: A process and an apparatus for taking up an object space using an opto-electronic range finder which operates according to a method of determining the time-of-flight of a signal comprise a first take-up step including transmitting optical transmitter signals in form of a beam of a predetermined first divergence angle, receiving optical signals reflected from an object and evaluating a distance value, while scanning the object space. After or before this first take-up step follows a second one wherein reference marks in the object space are taken up with a using an enlarged divergence angle so as to detect reliably the reference marks. The apparatus comprises, accordingly, appropriate devices for varying the divergence angle.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 3, 2003
    Inventors: Johannes Riegl, Rainer Reichert, Nikolaus Studnicka, Andreas Ullrich
  • Publication number: 20030090646
    Abstract: The present invention is directed to a system and method for taking up an object space using a laser range finder and a scanning device for scanning the object space. Furthermore, there is a passive opto-electronic receiver having an associated scanning device. The scanning device(s) scans the object space for the range finder and the passive receiver synchronously and in phase. To each image element, a spatial angle is assigned for identification. The passive receiver, comprises an array of transducer, elements where the image angle of an individual element of the array corresponds preferably to the beam angle of the laser beam. A memory includes one cell per image element so that with each distance measurement the individual elements of the array can be read and their signals stored in the cells of the memory.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 15, 2003
    Inventors: Johannes Riegl, Rainer Reichert, Andreas Ullrich
  • Publication number: 20030047684
    Abstract: The invention relates to a method for the recording of an object space with an opto-electronic distance sensor by a signal propagation time method, with a transmitter for transmitting optical signals, in particular those of a laser, and a receiver device for receiving optical signals, in particular laser radiation, which is reflected from objects located in the target space. The distance sensor is combined with a scanning device for deflecting the optical axes of the transmitter and receiver device, and it has an evaluation device, which from the propagation time or phase angle of the optical signal emitted ascertains distance values. Downstream of the scanning device, that is, out of the region oriented toward the distance sensor, part of the beam is split off from the beam path of the transmitter and/or receiver device and is directed to receiver diodes or the like, and from the corresponding signals, a pixel is ascertained and each pixel is assigned a distance value and a space angle.
    Type: Application
    Filed: October 4, 2002
    Publication date: March 13, 2003
    Inventors: Johannes Riegl, Andreas Ullrich, Wolfgang Zierlinger