Patents by Inventor John D. Le

John D. Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11156814
    Abstract: An optical system including one or more optical lenses, at least one retarder layer, a reflective polarizer, and a partial reflector is provided. The at least one retarder layer may include first and second retarder layers having different wavelength dispersion curves. The at least one retarder layer may include a first retarder layer having a non-uniform fast axis orientation and/or a non-uniform retardance.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 26, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael L. Steiner, Andrew J. Ouderkirk, Timothy L. Wong, Zhisheng Yun, Jo A. Etter, Gilles J. Benoit, John D. Le, Erin A. McDowell
  • Publication number: 20210215865
    Abstract: Optical films, such as reflective polarizer films, and optical systems including the optical films are described. An optical system includes one or more optical lenses having at least one curved major surface, a partial reflector, and a reflective polarizer. For a substantially normally incident light in a predetermined wavelength range extending at least from about 450 nm to about 600 nm: the partial reflector has an average optical reflectance of at least 30%, and the reflective polarizer has an average optical reflectance Rs for a first polarization state, an average optical transmittance Tp for an orthogonal second polarization state, and an average optical reflectance Rp for the second polarization state, where Tp?80%, Rp?1%, and 50%?Rs?95%.
    Type: Application
    Filed: July 11, 2019
    Publication date: July 15, 2021
    Inventors: John D. Le, Zhisheng Yun, Timothy L. Wong, Timothy J. Nevitt, Adam D. Haag, Arthur L. Kotz
  • Publication number: 20210168269
    Abstract: The disclosure describes an example vehicle assistance system including a light sensor, a pixelated filter array adjacent the light sensor, and a full-field optically-selective element adjacent the pixelated filter array. The optically-selective element is configured to selectively direct an optical component of light incident on the optically-selective element across the pixelated filter array to the light sensor.
    Type: Application
    Filed: July 29, 2019
    Publication date: June 3, 2021
    Inventors: John A. WHEATLEY, Gilles J.B. BENOIT, John D. LE, Zhisheng YUN, Jonah SHAVER, Susannah C. CLEAR, Timothy J. NEVITT, Kui CHEN-HO, Kenneth L. SMITH, David J.W. AASTUEN
  • Publication number: 20210129480
    Abstract: A lamination transfer article includes an elastomeric layer with a first major surface including an array of discrete microstructures separated by land areas, wherein the microstructures in the array have a top surface; a first tie layer overlying at least some of the top surfaces of the microstructures of the elastomeric layer, wherein the land areas on the first major surface are uncovered by the first tie layer; and a second layer on a second major surface of the elastomeric layer, wherein the second layer is chosen from a second tie layer and a polymeric carrier film.
    Type: Application
    Filed: February 16, 2018
    Publication date: May 6, 2021
    Inventors: John D. Le, Michael Benton Free, Margot A. Branigan, Susan L. Kent, Michael L. Steiner, Robert M. Jennings, Richard J. Ferguson
  • Publication number: 20200387003
    Abstract: An optical stack including a first reflective polarizer adhered to a second reflective polarizer is described. For normally incident light and each wavelength in a same predetermined wavelength range, each reflective polarizer transmits at least 80% of light polarized along a pass axis of the reflective polarizer and reflects at least 90% of light polarized along an orthogonal block axis of the reflective polarizer. Each reflective polarizer includes a plurality of polymeric interference layers reflecting and transmitting light primarily by optical interference in the predetermined wavelength range. A separation between the two polymeric interference layers in the plurality of polymeric interference layers farthest from each other are d1 and d2 for the respective first and second reflective polarizers, d1 is at least 20% less than d2. Polarizing beam splitters including the optical stack and optical systems including the polarizing beam splitter are described.
    Type: Application
    Filed: December 13, 2018
    Publication date: December 10, 2020
    Inventors: Zhisheng Yun, John D. Le, Timothy J. Nevitt, Susan L. Kent
  • Publication number: 20200379226
    Abstract: An optical system including one or more optical lenses, at least one retarder layer, a reflective polarizer, and a partial reflector is provided. The at least one retarder layer may include first and second retarder layers having different wavelength dispersion curves. The at least one retarder layer may include a first retarder layer having a non-uniform fast axis orientation and/or a non-uniform retardance.
    Type: Application
    Filed: March 21, 2018
    Publication date: December 3, 2020
    Inventors: Michael L. Steiner, Andrew J. Ouderkirk, Timothy L. Wong, Zhisheng Yun, Jo A. Etter, Gilles J. Benoit, John D. Le, Erin A. McDowell
  • Patent number: 10849234
    Abstract: Multilayer articles that include electrical circuits are prepared by the adhesive transfer of electrical circuit elements to the surface of an adhesive. A number of different methodologies are used, with all of the methodologies including the use of simple layers of circuit-forming material on a releasing substrate and structuring to generate circuit elements which can be transferred to an adhesive surface. In some methodologies, a structured releasing substrate is used to selectively transfer circuit-forming material, either from protrusions on the releasing substrate or from depressions on the releasing substrate. In other methodologies, an unstructured releasing substrate is used and either embossed to form a structured releasing substrate or contacted with a structured adhesive layer to selectively transfer circuit-forming material.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: November 24, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: John D. Le, Moses M. David, Jeffrey W. McCutcheon, Hung T. Tran
  • Publication number: 20200319389
    Abstract: Optical films and polarizing beam splitters including the optical films are described. In some cases, the optical film includes a first optical stack disposed on, and spaced apart by one or more spacer layers from, a second optical stack, each optical stack comprising a plurality of polymeric interference layers reflecting and transmitting light primarily by optical interference in a same predetermined wavelength range. Each optical stack has interference layers closer to the one or more spacer layers that reflect longer wavelengths and interference layers farther from the one or more spacer layers that reflect shorter wavelengths.
    Type: Application
    Filed: October 18, 2018
    Publication date: October 8, 2020
    Inventors: Zhisheng Yun, Timothy J. Nevitt, John D. Le, Susan L. Kent
  • Publication number: 20200284963
    Abstract: An optical element includes an optical surface configured to receive light at a predetermined wavelength in a range from about 400 nm to about 1000 nm. The optical surface is defined by a vertical axis and a horizontal axis defining four Cartesian quadrants sequentially numbered in a counter-clockwise direction. A first longitudinal section of the optical surface is centered on the vertical axis and a second longitudinal section of the optical surface is centered on the horizontal axis. The first and second longitudinal section each extend across opposite edges of the optical surface and have a same substantially uniform retardance for substantially normally incident light. The optical element includes four discrete retarder sections. Each retarder section is disposed on a respective Cartesian quadrant of the optical surface and has a retardance difference from the substantially uniform retardance of the optical surface that is greater than zero.
    Type: Application
    Filed: October 19, 2018
    Publication date: September 10, 2020
    Inventors: Zhisheng Yun, Michael L. Steiner, Jo A. Etter, Timothy L. Wong, Gilles J. Benoit, John D. Le, Erin A. McDowell, Susan L. Kent
  • Publication number: 20200192126
    Abstract: An optical lens including first and second polarizers, a partial reflector disposed between the first and second polarizers, a first phase retarder disposed between the first polarizer and the partial reflector, and a second phase retarder disposed between the partial reflector and the second polarizer is described. The optical lens is a single piece configured for use in an eyewear. Eyewear including at least one of the optical lenses is also described.
    Type: Application
    Filed: November 8, 2017
    Publication date: June 18, 2020
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Susan L. Kent, Erin A. McDowell, Timothy L. Wong, John D. Le, Michael L. Steiner
  • Publication number: 20200029443
    Abstract: Multilayer articles that include electrical circuits are prepared by the adhesive transfer of electrical circuit elements to the surface of an adhesive. A number of different methodologies are used, with all of the methodologies including the use of simple layers of circuit-forming material on a releasing substrate and structuring to generate circuit elements which can be transferred to an adhesive surface. In some methodologies, a structured releasing substrate is used to selectively transfer circuit-forming material, either from protrusions on the releasing substrate or from depressions on the releasing substrate. In other methodologies, an unstructured releasing substrate is used and either embossed to form a structured releasing substrate or contacted with a structured adhesive layer to selectively transfer circuit-forming material.
    Type: Application
    Filed: April 10, 2017
    Publication date: January 23, 2020
    Inventors: John D. Le, Moses M. David, Jeffrey W. McCutcheon, Hung T. Tran
  • Patent number: 10488673
    Abstract: The present disclosure provides an integrated optical component array and method of making an integrated optical component array useful for projection devices or other optical devices. The integrated optical component array can be a PBS array fabricated such that the individual PBS cubes having several elements can be assembled in a massively parallel manner and then singulated as individual optical components, and can result in a large reduction in manufacturing cost.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: November 26, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: John D. Le, Andrew J. Ouderkirk, Joseph C. Carls, Cameron T. Murray, Richard J. Ferguson, Cory C. Barum
  • Patent number: 10379369
    Abstract: The present disclosure provides an integrated optical component array and method of making an integrated optical component array useful for projection devices or other optical devices. The integrated optical component array can be a PBS array fabricated such that the individual PBS cubes having several elements can be assembled in a massively parallel manner and then singulated as individual optical components, and can result in a large reduction in manufacturing cost.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: August 13, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: John D. Le, Andrew J. Ouderkirk, Joseph C. Carls, Cameron T. Murray, Richard J. Ferguson, Cory C. Barum
  • Publication number: 20180292667
    Abstract: The present disclosure provides an integrated optical component array and method of making an integrated optical component array useful for projection devices or other optical devices. The integrated optical component array can be a PBS array fabricated such that the individual PBS cubes having several elements can be assembled in a massively parallel manner and then singulated as individual optical components, and can result in a large reduction in manufacturing cost.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 11, 2018
    Inventors: John D. Le, Andrew J. Ouderkirk, Joseph C. Carls, Cameron T. Murray, Richard J. Ferguson, Cory C. Barum
  • Publication number: 20180284471
    Abstract: The present disclosure provides an integrated optical component array and method of making an integrated optical component array useful for projection devices or other optical devices. The integrated optical component array can be a PBS array fabricated such that the individual PBS cubes having several elements can be assembled in a massively parallel manner and then singulated as individual optical components, and can result in a large reduction in manufacturing cost.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Inventors: John D. Le, Andrew J. Ouderkirk, Joseph C. Carls, Cameron T. Murray, Richard J. Ferguson, Cory C. Barum
  • Patent number: 10018850
    Abstract: The present disclosure provides an integrated optical component array and method of making an integrated optical component array useful for projection devices or other optical devices. The integrated optical component array can be a PBS array fabricated such that the individual PBS cubes having several elements can be assembled in a massively parallel manner and then singulated as individual optical components, and can result in a large reduction in manufacturing cost.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: July 10, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: John D. Le, Andrew J. Ouderkirk, Joseph C. Carls, Cameron T. Murray, Richard J. Ferguson, Cory C. Barum
  • Publication number: 20180134010
    Abstract: The present disclosure relates to compressible, multilayer articles useful in force sensing capacitors. The compressible multilayer articles include a silicone polymer layer having a first major surface and a second major surface and a first primer layer having a first major surface and a second major surface, wherein the thickness of the first primer layer is from about 100 nanometers to about 100 microns and at least a portion of the first major surface of the first primer layer is adhered to and in contact with the first major surface of the silicone polymer. The multilayer articles may include at least one of a first electrode and second primer layer. Methods of making the compressible, multilayer articles are also disclosed.
    Type: Application
    Filed: April 13, 2016
    Publication date: May 17, 2018
    Inventors: Margot A. BRANIGAN, Michael Benton FREE, David T. AMOS, Robert F. KAMRATH, Stephen A. JOHNSON, John D. LE
  • Publication number: 20180104941
    Abstract: The present disclosure relates to compressible, multilayer articles useful in force sensing capacitors. The compressible, multilayer articles include a cured, silicone elastomer layer having a first major surface and a second major surface and at least one of a first and second tie-layer, each having a first major surface and a second major surface, comprising a silicone polyoxamide, wherein the first major surface of the first tie-layer is in contact with and adhered to the first major surface of the cured, silicone elastomer layer and/or the first major surface of the second tie-layer is in contact with and adhered to the second major surface of the cured, silicone elastomer layer. The multilayer articles may include at least one of a first electrode and first primer layer and a second electrode and second primer layer. Methods of making the compressible, multilayer articles are also disclosed.
    Type: Application
    Filed: April 12, 2016
    Publication date: April 19, 2018
    Inventors: Michael Benton FREE, Margot A. BRANIGAN, Robert F. KAMRATH, Stephen A. JOHNSON, John D. LE, Kanta KUMAR
  • Publication number: 20160313566
    Abstract: The present disclosure provides an integrated optical component array and method of making an integrated optical component array useful for projection devices or other optical devices. The integrated optical component array can be a PBS array fabricated such that the individual PBS cubes having several elements can be assembled in a massively parallel manner and then singulated as individual optical components, and can result in a large reduction in manufacturing cost.
    Type: Application
    Filed: December 11, 2014
    Publication date: October 27, 2016
    Applicant: 3M INOVATIVE PROPERTIES COMPANY
    Inventors: John D. Le, Andrew J. Ouderkirk, Joseph C. Carls, Cameron T. Murray, Richard J. Ferguson, Cory C. Barum
  • Publication number: 20140251662
    Abstract: The present invention provides an electrically conductive, optically clear adhesive including an optically clear adhesive layer and an interconnected, electrically conductive network layer positioned over the optically clear adhesive layer. The electrically conductive, optically clear adhesive has a conductivity of between about 0.5 and about 1000 ohm/sq, haze of less than about 10%, and a transmittance of at least about 80%.
    Type: Application
    Filed: July 30, 2012
    Publication date: September 11, 2014
    Applicant: 3MM Innovative Properties Company
    Inventors: Nelson T. Rotto, Robert C. Fitzer, John D. Le