Patents by Inventor John G. Baust

John G. Baust has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140273063
    Abstract: A tissue engineered model (TEM) structure, an apparatus and method for making a TEM structure, and methods of using a TEM structure are disclosed. In an embodiment, the TEM structure includes at least one TEM segment. Each TEM segment includes a frame defining a bounded area, the frame having a height, a first edge, and a second edge opposite the first edge, each of the first edge and the second edge defining a perimeter of the bounded area, and the height defining a distance between the first edge and the second edge; a membrane affixed to the first edge about a perimeter of the frame; and a solidified gel and cell matrix disposed within the bounded area within the frame, wherein the solidified gel and cell matrix substantially fills a volume defined by the bounded area and the height of the frame.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: CPSI HOLDINGS LLC
    Inventors: John G. BAUST, Joshua T. SMITH, Kimberly L. SANTUCCI, Kristi K. SNYDER, Anthony T. ROBILOTTO, Robert G. VAN BUSKIRK, John M. BAUST, William L. CORWIN, Jennie F. MCKAIN
  • Patent number: 8784409
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen interconnected with cryotreatment devices including cryoprobes and catheters. The cryogenic medical device promotes subcooling to the tips of various external cryogenic instrument configurations.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: July 22, 2014
    Assignee: Endocare, Inc.
    Inventors: Anthony Robilotto, Kristi K. Snyder, John G Baust, John M. Buast, Roy E. Cheeks
  • Patent number: 8747397
    Abstract: The resorbable cryoprobe device and process is a novel approach for treating localized disease allowing for the precise combined application of freezing temperatures and cytotoxic or cryosensitizing agents within a self-contained matrix/package for optimized tissue destruction. The cryopellet is comprised of a list of components including a source of cryogen to produce the sub-zero temperatures, a porous matrix to contain the cytotoxic agent, cytotoxic agent, and a delivery packet. Data presented herein demonstrates the efficacy of this approach in destroying cancerous tissue. For example, the application of freezing temperatures to ?10° C. results in approximately 15% cell death, while exposure to cytotoxic agents such as TRAIL produces minimal cell death. The utilization of the cryopellet approach results in a synergistic effect yielding complete cell death at the same temperature.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 10, 2014
    Assignee: CPSI Holdings LLC
    Inventors: John M. Baust, John G. Baust, Anthony T. Robilotto, Kristi K. Snyder, Robert G. Van Buskirk
  • Patent number: 8551081
    Abstract: A cryosurgical system and method for supplying cryogen to a probe. The system including a container filled with cryogen and having bellows of a pump submerged within said cryogen. Conduits fluidly interconnect the bellows and a probe that is outside the container to permit the cryogen to be forced from the bellows to the probe upon activation of pump. A pressure relief valve is fluidly coupled to the conduits and positioned between the bellows and the probe. After initially forcing cryogen to the probe at a pressure that establishes a colligative-based sub-cooling of the liquid cryogen, the pressure relief valve is activated to lower the pressure of the cryogen to a running pressure.
    Type: Grant
    Filed: October 3, 2010
    Date of Patent: October 8, 2013
    Assignee: Endocare, Inc.
    Inventors: John G. Baust, Roy Cheeks
  • Patent number: 8439905
    Abstract: The device of the invention takes the form of a catheter/probe and is a closed loop system in which cryogen is delivered along the length of the catheter/probe to the tip where freezing occurs, and then recirculated. The device is a tube within a tube and comprises a number of parts including supply and return (internal) tubes, outer sheath (external tube) seaJed to the inner tubes at one or both ends with a gas filled lumen between the internal and external tubes. The lumen of the external tube is filled with a saturated gas which solidifies upon cooling, thereby creating a vacuum along the catheter length and providing for insulation between the inner and outer tubes, and preventing freezing along the probe shaft length. The outside surface of the internal tubes is modified to potentiate gas nucleation on the outer surfaces of the internal tubes when cooled.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 14, 2013
    Assignee: Endocare, Inc.
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Patent number: 8409184
    Abstract: The resorbable cryoprobe device and process is a novel approach for treating localized disease allowing for the precise combined application of freezing temperatures and cytotoxic or cryosensitizing agents within a self-contained matrix/package for optimized tissue destruction. The cryopellet is comprised of a list of components including a source of cryogen to produce the sub-zero temperatures, a porous matrix to contain the cytotoxic agent, cytotoxic agent, and a delivery packet. Data presented herein demonstrates the efficacy of this approach in destroying cancerous tissue. For example, the application of freezing temperatures to ?10° C. results in approximately 15% cell death, while exposure to cytotoxic agents such as TRAIL produces minimal cell death. The utilization of the cryopellet approach results in a synergistic effect yielding complete cell death at the same temperature.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: April 2, 2013
    Assignee: CPSI Holdings LLC
    Inventors: John M. Baust, John G. Baust, Anthony T. Robilotto, Kristi K. Snyder, Robert G. Van Buskirk
  • Publication number: 20120059364
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues, particularly as utilized for the ablation of cardiac tissue in the treatment of atrial fibrillation. The device is a closed or semi-closed system in which the liquid cryogen is nitrogen contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state, specifically supercritical nitrogen, and may be utilized in any rapid cooling systems. As designed, the device also integrates endocardial catheters and epicardial probes.
    Type: Application
    Filed: March 2, 2011
    Publication date: March 8, 2012
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Melissa K. Dobson, Anthony T. Robilotto, Kristi K. Snyder, Rob Van Buskirk
  • Publication number: 20120028933
    Abstract: A novel class of agents has been identified to serve as cell-guard agents and/or target-specific supplements to increase cell quality and yield, as well as select for target cell populations. Laboratory experiments have demonstrated the use of cell-guard agents and/or target-specific supplements in the bioprocessing of cells as well as in selecting out a desired cell population. Several potential additive agents (both natural and synthetic) have been identified during these studies, including Vitamin D3, NAC, resveratrol, salubrinal, AKT, and tunicamycin (among others) that hold promise for application in cell models. In one embodiment, hypothermic stress regimes are utilized. In another embodiment, normothermic conditions are utilized while other stressors are tested in the processing. The methods of maintaining mass cell cultures and/or selecting out particular cell populations for further research and clinical use represents an important step in therapeutic discovery.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Inventors: John M. Baust, John G. Baust, William L. Corwin, Robert G. Van Buskirk
  • Publication number: 20110245823
    Abstract: A cryosurgical system and method for supplying cryogen to a probe. The system including a container filled with cryogen and having bellows of a pump submerged within said cryogen. Conduits fluidly interconnect the bellows and a probe that is outside the container to permit the cryogen to be forced from the bellows to the probe upon activation of pump. A pressure relief valve is fluidly coupled to the conduits and positioned between the bellows and the probe. After initially forcing cryogen to the probe at a pressure that establishes a colligative-based sub-cooling of the liquid cryogen, the pressure relief valve is activated to lower the pressure of the cryogen to a running pressure.
    Type: Application
    Filed: October 3, 2010
    Publication date: October 6, 2011
    Applicant: ENDOCARE, INC.
    Inventors: JOHN G. BAUST, ROY CHEEKS
  • Publication number: 20110184402
    Abstract: One embodiment of the invention is a flexible cryogenic probe tip. The flexible probe tip has a linear freeze zone at a distal end of the probe that allows for its placement and precisely controlled movements. The flexible cryogenic probe tip precisely conforms to the target tissue surface to create a linear lesion. In addition, the probe tip is steerable to facilitate proper placement with minimal access points into a patient's body. Various configurations of the flexible probe tip allow it to conform and ablate tissue of many sizes, shapes, and/or dimensions.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 28, 2011
    Applicant: CPSI BIOTECH
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony T. Robilotto, Claudia Lueckge
  • Publication number: 20110060323
    Abstract: The resorbable cryoprobe device and process is a novel approach for treating localized disease allowing for the precise combined application of freezing temperatures and cytotoxic or cryosensitizing agents within a self-contained matrix/package for optimized tissue destruction. The cryopellet is comprised of a list of components including a source of cryogen to produce the sub-zero temperatures, a porous matrix to contain the cytotoxic agent, cytotoxic agent, and a delivery packet. Data presented herein demonstrates the efficacy of this approach in destroying cancerous tissue. For example, the application of freezing temperatures to ?10° C. results in approximately 15% cell death, while exposure to cytotoxic agents such as TRAIL produces minimal cell death. The utilization of the cryopellet approach results in a synergistic effect yielding complete cell death at the same temperature.
    Type: Application
    Filed: October 28, 2009
    Publication date: March 10, 2011
    Inventors: John M. Baust, John G. Baust, Robert G. Van Buskirk, Anthony Robilotto, Kristi Snyder
  • Publication number: 20100305000
    Abstract: The present invention is directed to systems and proteogenomic methods for predicting the success of the transplant of a cell, tissue, or organ by providing a means to determine the quality of the cell, tissue, or organ to be transplanted. In one embodiment, the present invention uses samples from the preservation solution to obtain phenomic fingerprints correlated with transplant pre-operative and post-operative data as a pre-operative tissue diagnostic and procedural success predictive indicator.
    Type: Application
    Filed: August 13, 2010
    Publication date: December 2, 2010
    Applicant: Biolife Solutions Inc.
    Inventors: Aby J. Mathew, Robert Van Buskirk, John G. Baust, John M. Baust, Dominic M. Clarke, Ian B. Nicoud
  • Publication number: 20100256622
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen. The cryogenic medical device promotes the subcooling to any external cryogenic instrument.
    Type: Application
    Filed: June 23, 2010
    Publication date: October 7, 2010
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Publication number: 20100076421
    Abstract: The device of the invention takes the form of a catheter/probe and is a closed loop system in which cryogen is delivered along the length of the catheter/probe to the tip where freezing occurs, and then is recirculated. The device is a tube within a tube and comprises a number of parts including supply and return tubes (internal tubes), outer sheath (external tube) sealed to the inner tubes at one or both ends with a gas filled lumen between the internal and external tubes. The lumen of the external tube is filled with a saturated gas which solidifies upon cooling, thereby creating a vacuum along the length of the catheter and providing for insulation between the inner and outer tubes, and preventing freezing along the length of the probe shaft. Further, the outside surface of the internal tubes is modified to potentiate gas nucleation on the outer surfaces of the internal tubes when cooled.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 25, 2010
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Publication number: 20100057064
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, return chamber, and a series of valves to control the flow of the liquid cryogen. The cryogenic medical device promotes the subcooling to any external cryogenic probe.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 4, 2010
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Publication number: 20100057067
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen. The cryogenic medical device promotes the subcooling to any external cryogenic instrument.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 4, 2010
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Publication number: 20090149335
    Abstract: The present invention is directed to systems and proteogenomic methods for predicting the success of the transplant of a cell, tissue, or organ by providing a means to determine the quality of the cell, tissue, or organ to be transplanted. In one embodiment, the present invention uses samples from the preservation solution to obtain phenomic fingerprints correlated with transplant pre-operative and post-operative data as a pre-operative tissue diagnostic and procedural success predictive indicator.
    Type: Application
    Filed: June 27, 2008
    Publication date: June 11, 2009
    Applicant: BIOLIFE SOLUTIONS INC.
    Inventors: Aby J. Mathew, Robert Van Buskirk, John G. Baust, John M. Baust, Dominic Clarke, Ian Nicoud
  • Publication number: 20090043297
    Abstract: A cryosurgical system and method for supplying cryogen to a probe. The system including a container filled with cryogen and having bellows of a pump submerged within said cryogen. Conduits fluidly interconnect the bellows and a probe that is outside the container to permit the cryogen to be forced from the bellows to the probe upon activation of pump. A pressure relief valve is fluidly coupled to the conduits and positioned between the bellows and the probe. After initially forcing cryogen to the probe at a pressure that establishes a colligative-based sub-cooling of the liquid cryogen, the pressure relief valve is activated to lower the pressure of the cryogen to a running pressure.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 12, 2009
    Applicant: ENDOCARE, INC.
    Inventors: JOHN G. BAUST, ROY CHEEKS
  • Patent number: 7416548
    Abstract: A cryosurgical system and method for supplying cryogen to a probe. The system including a container filled with cryogen and having bellows of a pump submerged within said cryogen. Conduits fluidly interconnect the bellows and a probe that is outside the container to permit the cryogen to be forced from the bellows to the probe upon activation of pump. A pressure relief valve is fluidly coupled to the conduits and positioned between the bellows and the probe. After initially forcing cryogen to the probe at a pressure that establishes a colligative-based sub-cooling of the liquid cryogen, the pressure relief valve is activated to lower the pressure of the cryogen to a running pressure.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: August 26, 2008
    Assignee: Endocare, Inc.
    Inventors: John G. Baust, Roy Cheeks
  • Patent number: 7192426
    Abstract: A cryosurgical system and method for supplying cryogen to a probe. The system including a container filled with cryogen and having bellows of a pump submerged within said cryogen. Conduits fluidly interconnect the bellows and a probe that is outside the container to permit the cryogen to be forced from the bellows to the probe upon activation of pump. A pressure relief valve is fluidly coupled to the conduits and positioned between the bellows and the probe. After initially forcing cryogen to the probe at a pressure that establishes a colligative-based sub-cooling of the liquid cryogen, the pressure relief valve is activated to lower the pressure of the cryogen to a running pressure.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 20, 2007
    Assignee: EndoCare, Inc.
    Inventors: John G. Baust, Roy Cheeks