Patents by Inventor John K. Shimmick

John K. Shimmick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140100556
    Abstract: An ophthalmic surgery system and method for treating presbyopia by performing ablative photodecomposition of the corneal surface. The offset image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed to ablate an optical zone sized to match the patient pupil with a peripheral transition zone outside the pupil. The shape of the ablated optical zone is different from the shape of the final optical correction on the anterior surface of the cornea. The optical zone corrects for near-vision centrally and far-vision peripherally. A movable image displacement mechanism enables radial displacement and angular rotation of the profiled beam exiting from the variable aperture.
    Type: Application
    Filed: August 5, 2013
    Publication date: April 10, 2014
    Applicant: AMO Manufacturing USA, LLC
    Inventors: Marc Odrich, Kenneth Greenberg, Jerome A. Legerton, Charles R. Munnerlyn, John K. Shimmick
  • Patent number: 7972325
    Abstract: A method for measuring an optical system comprises transmitting an image with the optical system. Gradients of the optical system can be determined by separating the transmitted image with a lenslet array. An error-correcting change in the shape of the optical system can be mapped by integrating across the gradients. The change in elevation around the path is related to the accuracy of the gradient array. A system for measuring a wavefront of an eye includes an image source for projecting an image into the eye, lenslets, a detector for measuring angles of light rays of an optical surface of an eye, and a computer for mapping the errors of the eye. A tomographic wavefront map is made by deflecting the measurement path of the wavefront sensor. Aberrations are selected for treatment in response to an order of the aberration and a tissue structure corresponding to the aberration.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: July 5, 2011
    Assignee: AMO Manufacturing, USA, LLC
    Inventors: Lawrence W. Stark, John K. Shimmick
  • Patent number: 7918846
    Abstract: An ophthalmological surgery system and method for performing ablative photodecomposition of the corneal surface by offset image scanning. The image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed with a movable image offset displacement mechanism capable of effecting radial displacement and angular rotation of the profiled beam exiting from the variable aperture. The profiled beam is rotated by rotating the aperture in conjunction with the offset displacement mechanism. The invention enables wide area treatment with a laser having a narrower beam, and can be used in the treatment of many different conditions, such as hyperopia, hyperopic astigmatism, irregular refractive aberrations, post ablation smoothing and phototherapeutic keratectomy.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: April 5, 2011
    Assignee: AMO Manufacturing USA, LLC
    Inventors: John K. Shimmick, William B. Telfair, Charles R. Munnerlyn, Herrmann J. Glocker
  • Publication number: 20090216217
    Abstract: An ophthalmic surgery system and method for treating presbyopia by performing ablative photodecomposition of the corneal surface. The offset image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed to ablate an optical zone sized to match the patient pupil with a peripheral transition zone outside the pupil. The shape of the ablated optical zone is different from the shape of the final optical correction on the anterior surface of the cornea. The optical zone corrects for near-vision centrally and far-vision peripherally. A movable image displacement mechanism enables radial displacement and angular rotation of the profiled beam exiting from the variable aperture.
    Type: Application
    Filed: May 6, 2009
    Publication date: August 27, 2009
    Applicant: AMO Manufacturing USA, LLC.
    Inventors: Marc Odrich, Kenneth Greenberg, Jerome A. Legerton, Charles R. Munnerlyn, John K. Shimmick
  • Patent number: 7503916
    Abstract: Systems and methods of the present invention measure at least one reflecting surface of an object disposed along an optical path. In some embodiments a measured optical interference signal for each of at least three wavelengths of reflected light may be used to determine a modulation of frequency components of a Fourier series. Frequency components of a Fourier series may be transformed to spatial components that describe intensities and positions of light reflected along an optical path. Systems and methods of the present invention permit rapid measuring and may monitor corneal thickness during surgery. The invention may do so by integrating an ablation device and a measurement apparatus into a single system. An integrated scanning and monitoring system may include an ablative light source producing an ablative beam and a measurement light source producing a measurement beam.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: March 17, 2009
    Assignee: Advanced Medical Optics, Inc.
    Inventor: John K. Shimmick
  • Patent number: 7238177
    Abstract: The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: July 3, 2007
    Assignee: Visx, Incorporated
    Inventors: Seema Somani, Kingman Yee, John K. Shimmick
  • Patent number: 7133137
    Abstract: Systems and methods of the present invention measure at least one reflecting surface of an object disposed along an optical path. In some embodiments a measured optical interference signal for each of at least three wavelengths of reflected light may be used to determine a modulation of frequency components of a Fourier series. Frequency components of a Fourier series may be transformed to spatial components that describe intensities and positions of light reflected along an optical path. Systems and methods of the present invention permit rapid measuring and may monitor corneal thickness during surgery. The invention may do so by integrating an ablation device and a measurement apparatus into a single system. An integrated scanning and monitoring system may include an ablative light source producing an ablative beam and a measurement light source producing a measurement beam.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: November 7, 2006
    Assignee: Visx, Incorporated
    Inventor: John K. Shimmick
  • Patent number: 7001376
    Abstract: The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
    Type: Grant
    Filed: October 13, 2003
    Date of Patent: February 21, 2006
    Assignee: VISX, Inc.
    Inventors: Seema Somani, Kingman Yee, John K. Shimmick
  • Publication number: 20040199224
    Abstract: An ophthalmological surgery system and method for performing ablative photodecomposition of the corneal surface by offset image scanning. The image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed with a movable image offset displacement mechanism capable of effecting radial displacement and angular rotation of the profiled beam exiting from the variable aperture. The profiled beam is rotated by rotating the aperture in conjunction with the offset displacement mechanism. The invention enables wide area treatment with a laser having a narrower beam, and can be used in the treatment of many different conditions, such as hyperopia, hyperopic astigmatism, irregular refractive aberrations, post ablation smoothing and phototherapeutic keratectomy.
    Type: Application
    Filed: April 23, 2004
    Publication date: October 7, 2004
    Applicant: VISX, Incorporated
    Inventors: John K. Shimmick, William B. Telfair, Charles R. Munnerlyn, Herrmann J. Glockler
  • Patent number: 6755818
    Abstract: An ophthalmological surgery system and method for performing ablative photodecomposition of the corneal surface by offset image scanning. The image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed with a movable image offset displacement mechanism capable of effecting radial displacement and angular rotation of the profiled beam exiting from the variable aperture. The profiled beam is rotated by rotating the aperture in conjunction with the offset displacement mechanism. The invention enables wide area treatment with a laser having a narrower beam, and can be used in the treatment of many different conditions, such as hyperopia, hyperopic astigmatism, irregular refractive aberrations, post ablation smoothing and phototherapeutic keratectomy.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: June 29, 2004
    Assignee: VISX, Incorporated
    Inventors: John K. Shimmick, William B. Telfair, Charles R. Munnerlyn, Herrmann J. Glockler
  • Publication number: 20040078031
    Abstract: The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
    Type: Application
    Filed: October 13, 2003
    Publication date: April 22, 2004
    Applicant: VISX, Inc.
    Inventors: Seema Somani, Kingman Yee, John K. Shimmick
  • Publication number: 20040054356
    Abstract: An ophthalmic surgery system and method for treating presbyopia by performing ablative photodecomposition of the corneal surface. The offset image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed to ablate an optical zone sized to match the patient pupil with a peripheral transition zone outside the pupil. The shape of the ablated optical zone is different from the shape of the final optical correction on the anterior surface of the cornea. The optical zone corrects for near-vision centrally and far-vision peripherally. A movable image displacement mechanism enables radial displacement and angular rotation of the profiled beam exiting from the variable aperture.
    Type: Application
    Filed: June 19, 2003
    Publication date: March 18, 2004
    Applicant: VISX, Incorporated
    Inventors: Marc Odrich, Kenneth Greenberg, Jerome A. Legerton, Charles R. Munnerlyn, John K. Shimmick
  • Publication number: 20040021874
    Abstract: Systems and methods of the present invention measure at least one reflecting surface of an object disposed along an optical path. In some embodiments a measured optical interference signal for each of at least three wavelengths of reflected light may be used to determine a modulation of frequency components of a Fourier series. Frequency components of a Fourier series may be transformed to spatial components that describe intensities and positions of light reflected along an optical path.
    Type: Application
    Filed: June 19, 2003
    Publication date: February 5, 2004
    Applicant: VISX, INCORPORATED, A Delaware Corporation
    Inventor: John K. Shimmick
  • Patent number: 6685319
    Abstract: Systems and methods verify and/or correct optical errors of an eye. A plan is generated for a corrective procedure of the eye from a measured optical error, and a verification lens is formed based on the measured optical error to verify the procedure plan. Alignment of an aperture (with a size selected to correspond to the size of the pupil) with the eye while measuring optical properties of the eye through the verification lens improves verification accuracy, as does mounting of the verification lens and aperture to the patient with a trial frame.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: February 3, 2004
    Assignee: Visx, Incorporated
    Inventors: Jason Watson, John K. Shimmick
  • Patent number: 6666855
    Abstract: The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 23, 2003
    Assignee: Visx, Inc.
    Inventors: Seema Somani, Kingman Yee, John K. Shimmick
  • Patent number: 6663619
    Abstract: An ophthalmic surgery system and method for treating presbyopia by performing ablative photodecomposition of the corneal surface. A laser system ablates tissue to a predetermined ablation shape, and the cornea heals significantly to form a multifocal shape correcting presbyopia. The multifocal shape corrects for near-vision centrally and far-vision peripherally. The system and method enables wide area treatment with a laser having a narrower beam than the treatment area, and can be used in the treatment of many conditions in conjunction with presbyopia such as hyperopia, hyperopic astigmatism and irregular refractive aberrations.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: December 16, 2003
    Assignee: VISX Incorporated
    Inventors: Marc Odrich, Kenneth Greenberg, Jerome A. Legerton, Charles R. Munnerlyn, John K. Shimmick
  • Patent number: 6605081
    Abstract: Systems, methods and apparatus for generating images of portions of the patient's eye, such as the anterior surface of the cornea. The methods and apparatus of the present invention are particularly useful for directly imaging the profile of the ablated region of the cornea during or immediately following a laser ablation procedure, such as photorefractive keratometry (PRK), phototherapeutic keratectomy (PTK), laser in-situ keratomileusis (LASIK) or the like. These methods and apparatus allow the surgeon to precisely image the exterior edge of the eye to characterize the profile of ablated corneas and to determine the spatial variance of tissue ablation rates during the surgical procedures. Methods and apparatus are also provided for generating one or more images depicting the profile of the ablated region of the cornea. The profile is registered with a pre-ablation profile to provide feedback regarding the true ablation properties of the eye.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: August 12, 2003
    Assignee: Visx, Incorporated
    Inventors: John K. Shimmick, Stephen J. Hinkson, Charles R. Munnerlyn
  • Patent number: 6530916
    Abstract: Methods and devices for performing corrective eye surgery generally direct a laser beam at a target region of a patient's eye with the laser beam having a non-uniform energy distribution profile. As ablation rates vary locally across the beam cross-section, the energy distribution profile is tailored to effect a uniform ablation depth with each laser pulse of an excimer laser system.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: March 11, 2003
    Assignee: Visx, Incorporated
    Inventor: John K. Shimmick
  • Patent number: 6520958
    Abstract: Systems, methods and apparatus for generating images of portions of the patient's eye, such as the anterior surface of the cornea. The methods and apparatus of the present invention are particularly useful for directly imaging the profile of the ablated region of the cornea during or immediately following a laser ablation procedure, such as photorefractive keratometry (PRK), phototherapeutic keratectomy (PTK), laser in-situ keratomileusis (LASIK) or the like. These methods and apparatus allow the surgeon to precisely image the exterior edge of the eye to characterize the profile of ablated corneas and to determine the spatial variance of tissue ablation rates during the surgical procedures. Methods and apparatus are also provided for generating one or more images depicting the profile of the ablated region of the cornea. The profile is registered with a pre-ablation profile to provide feedback regarding the true ablation properties of the eye.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: February 18, 2003
    Assignee: VISX, Incorporated
    Inventors: John K. Shimmick, Stephen J. Hinkson, Charles R. Munnerlyn
  • Publication number: 20020198515
    Abstract: The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
    Type: Application
    Filed: April 23, 2002
    Publication date: December 26, 2002
    Applicant: VISX, Inc.
    Inventors: Seema Somani, Kingman Yee, John K. Shimmick