Patents by Inventor John M Capek

John M Capek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11331476
    Abstract: In some embodiments, a method includes delivering to a native valve annulus (e.g., a native mitral valve annulus) of a heart a prosthetic heart valve (200) having a body (242) expandable from a collapsed, delivery configuration to an expanded, deployed configuration. The method can further include, after the delivering, causing the prosthetic heart valve to move from the delivery configuration to the deployed configuration. With the prosthetic heart valve in its deployed configuration, an anchoring tether (191) extending from the prosthetic heart valve can be secured to a wall (Vw) of the heart (H). An electrode (189) coupled to at least one of the prosthetic heart valve or the anchoring tether can then be used to at least one of pace the heart or sense a signal associated with the heart.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 17, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: John M. Capek, Michael J. Urick
  • Publication number: 20200282204
    Abstract: In some embodiments, a method includes delivering to a native valve annulus (e.g., a native mitral valve annulus) of a heart a prosthetic heart valve (200) having a body (242) expandable from a collapsed, delivery configuration to an expanded, deployed configuration. The method can further include, after the delivering, causing the prosthetic heart valve to move from the delivery configuration to the deployed configuration. With the prosthetic heart valve in its deployed configuration, an anchoring tether (191) extending from the prosthetic heart valve can be secured to a wall (Vw) of the heart (H). An electrode (189) coupled to at least one of the prosthetic heart valve or the anchoring tether can then be used to at least one of pace the heart or sense a signal associated with the heart.
    Type: Application
    Filed: November 20, 2018
    Publication date: September 10, 2020
    Applicant: Tendyne Holdings, Inc.
    Inventors: John M. Capek, Michael J. Urick
  • Publication number: 20170021064
    Abstract: A device and a method of manufacturing an implantable medical device, such as a stent, are described herein. The device includes a metallic region composed of a bioerodable metal and a polymer region composed of a biodegradable polymer contacting the metallic region. The metallic region may erode at a different rate when exposed to bodily fluids than the polymer region when exposed to bodily fluids. In certain embodiments, the polymer region is an outer layer and the metallic region is an inner layer of the device.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: David C. Gale, Bin Huang, John M. Capek, Dehnad Houdin
  • Patent number: 8172897
    Abstract: A device and a method of manufacturing an implantable medical device, such as a stent, are described herein. The device includes a metallic region composed of a bioerodable metal and a polymer region composed of a biodegradable polymer contacting the metallic region. The metallic region may erode at a different rate when exposed to bodily fluids than the polymer region when exposed to bodily fluids. In certain embodiments, the polymer region is an outer layer and the metallic region is an inner layer of the device. A further aspect of the invention includes device and a method of manufacturing the device that includes a mixture of a biodegradable polymer and bioerodable metallic particles. The mixture may be used to fabricate an implantable medical device or to coat an implantable medical device. In some embodiments, the metallic particles are metallic nanoparticles.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 8, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: David C. Gale, Bin Huang, John M Capek, John Y. Yan, Houdin Dehnad
  • Publication number: 20110313510
    Abstract: A device and a method of manufacturing an implantable medical device, such as a stent, are described herein. The device includes a metallic region composed of a bioerodable metal and a polymer region composed of a biodegradable polymer contacting the metallic region. The metallic region may erode at a different rate when exposed to bodily fluids than the polymer region when exposed to bodily fluids. In certain embodiments, the polymer region is an outer layer and the metallic region is an inner layer of the device. A further aspect of the invention includes device and a method of manufacturing the device that includes a mixture of a biodegradable polymer and bioerodable metallic particles. The mixture may be used to fabricate an implantable medical device or to coat an implantable medical device. In some embodiments, the metallic particles are metallic nanoparticles.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 22, 2011
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang, John M. Capek
  • Publication number: 20110307053
    Abstract: A device and a method of manufacturing an implantable medical device, such as a stent, are described herein. The device includes a metallic region composed of a bioerodable metal and a polymer region composed of a biodegradable polymer contacting the metallic region. The metallic region may erode at a different rate when exposed to bodily fluids than the polymer region when exposed to bodily fluids. In certain embodiments, the polymer region is an outer layer and the metallic region is an inner layer of the device.
    Type: Application
    Filed: July 7, 2011
    Publication date: December 15, 2011
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang, John M. Capek, Houdin Dehnad