Patents by Inventor John M. Guerra

John M. Guerra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230332304
    Abstract: A radiation-assisted (typically solar-assisted)electrolyzer cell and panel for high-efficiency hydrogen production comprises a photoelectrode and electrode pair, with said photoelectrode comprising either a photoanode electrically coupled to a cathode shared with an anode, or a photocathode electrically coupled to an anode shared with a cathode; electrolyte; gas separators; all within a container divided into two chambers by said shared cathode or shared anode, and at least a portion of which is transparent to the electromagnetic radiation required by said photoanode (or photocathode) to apply photovoltage to a shared cathode (or anode) that increases the electrolysis current and hydrogen production.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventor: John M. Guerra
  • Patent number: 11739432
    Abstract: A radiation-assisted (typically solar-assisted) electrolyzer cell and panel for high-efficiency hydrogen production comprises a photoelectrode and electrode pair, with said photoelectrode comprising either a photoanode electrically coupled to a cathode shared with an anode, or a photocathode electrically coupled to an anode shared with a cathode; electrolyte; gas separators; all within a container divided into two chambers by said shared cathode or shared anode, and at least a portion of which is transparent to the electromagnetic radiation required by said photoanode (or photocathode) to apply photovoltage to a shared cathode (or anode) that increases the electrolysis current and hydrogen production.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: August 29, 2023
    Assignee: Nanoptek Corporation
    Inventor: John M. Guerra
  • Publication number: 20220123391
    Abstract: A photoelectrochemical secondary cell comprising a photocatalytic anode, or photoanode; an anode; a cathode comprising a metal hydride; electrolyte; separator; and case at least a portion of which is transparent to the electromagnetic radiation required by said photoanode to charge said photoelectrochemical secondary cell.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventor: John M. Guerra
  • Publication number: 20210040625
    Abstract: A radiation-assisted (typically solar-assisted) electrolyzer cell and panel for high-efficiency hydrogen production comprises a photoelectrode and electrode pair, with said photoelectrode comprising either a photoanode electrically coupled to a cathode shared with an anode, or a photocathode electrically coupled to an anode shared with a cathode; electrolyte; gas separators; all within a container divided into two chambers by said shared cathode or shared anode, and at least a portion of which is transparent to the electromagnetic radiation required by said photoanode (or photocathode) to apply photovoltage to a shared cathode (or anode) that increases the electrolysis current and hydrogen production.
    Type: Application
    Filed: August 5, 2020
    Publication date: February 11, 2021
    Inventor: John M. Guerra
  • Publication number: 20200006830
    Abstract: A photoelectrochemical secondary cell comprising a photocatalytic anode, or photoanode; an anode; a cathode comprising a metal hydride; electrolyte; separator; and case at least a portion of which is transparent to the electromagnetic radiation required by said photoanode to charge said photoelectrochemical secondary cell.
    Type: Application
    Filed: August 20, 2019
    Publication date: January 2, 2020
    Inventor: John M. Guerra
  • Publication number: 20190140331
    Abstract: A photoelectrochemical secondary cell comprising a photocatalytic anode, or photoanode; an anode; a cathode comprising a metal hydride; electrolyte; separator; and case at least a portion of which is transparent to the electromagnetic radiation required by said photoanode to charge said photoelectrochemical secondary cell.
    Type: Application
    Filed: July 16, 2018
    Publication date: May 9, 2019
    Inventor: John M. Guerra
  • Patent number: 10050319
    Abstract: A photoelectrochemical secondary cell comprising a photocatalytic anode, or photoanode; an anode; a cathode comprising a metal hydride; electrolyte; separator; and case at least a portion of which is transparent to the electromagnetic radiation required by said photoanode to charge said photoelectrochemical secondary cell.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 14, 2018
    Inventor: John M. Guerra
  • Patent number: 9847439
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: December 19, 2017
    Inventor: John M. Guerra
  • Publication number: 20160365615
    Abstract: A photoelectrochemical secondary cell comprising a photocatalytic anode, or photoanode; an anode; a cathode comprising a metal hydride; electrolyte; separator; and case at least a portion of which is transparent to the electromagnetic radiation required by said photoanode to charge said photoelectrochemical secondary cell.
    Type: Application
    Filed: May 26, 2015
    Publication date: December 15, 2016
    Inventor: John M. Guerra
  • Publication number: 20160293786
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 6, 2016
    Inventor: John M. Guerra
  • Patent number: 8673399
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.2 and greater, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 18, 2014
    Assignee: Nanoptek Corporation
    Inventors: John M. Guerra, Lukas M. Thulin, Amol N. Chandekar
  • Patent number: 7992528
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: August 9, 2011
    Assignee: Nanoptek Corporation
    Inventor: John M. Guerra
  • Patent number: 7995871
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: January 10, 2009
    Date of Patent: August 9, 2011
    Assignee: Nanoptek Corporation
    Inventor: John M. Guerra
  • Patent number: 7947221
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 24, 2011
    Inventor: John M. Guerra
  • Patent number: 7628928
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: December 8, 2009
    Inventor: John M. Guerra
  • Publication number: 20090116095
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Application
    Filed: January 10, 2009
    Publication date: May 7, 2009
    Inventor: John M. Guerra
  • Publication number: 20080299697
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.2 and greater, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 4, 2008
    Applicant: NANOPTEK CORPORATION
    Inventors: John M. Guerra, Lukas M. Thulin
  • Publication number: 20080283121
    Abstract: Apparatus for generating electricity and for carrying out photo-induced reactions comprises: a primary reflector (610) or other optic which concentrates radiation to a primary focus; a secondary reflector at the primary focus to direct radiation to a secondary focus; a photovoltaic device (602) to convert radiation to electricity; and a photo-reactor (116) having a photoactive electrode, one of the photovoltaic device (602) and the photoactive electrode (116) lies at the primary focus, and the other at the secondary focus. Electric potential generated by the photovoltaic device (602) may be used to provide a bias or over-voltage between the photoactive electrode and a counter electrode. The apparatus may be used to photolyze water or to carry out other photochemical reactions.
    Type: Application
    Filed: June 10, 2008
    Publication date: November 20, 2008
    Applicant: NANOPTEK CORPORATION
    Inventor: John M. Guerra
  • Patent number: 6969472
    Abstract: A method for manufacturing hemi-cylindrical and hemi-spherical micro structures is provided. A pattern is formed onto a substrate, and a layer of material is subsequently grown onto the substrate. Due to growth characteristics, the layer will form radially symmetric features when grown to an appropriate thickness.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: November 29, 2005
    Assignee: LSI Logic Corporation
    Inventors: Dmitri V. Vezenov, John M. Guerra, Leonard Wan, Paul F. Sullivan
  • Patent number: 6885618
    Abstract: A method and apparatus for initializing an optical recording medium comprising a phase change material using a series of flashes of light. A series of low-power, high duty cycle flashes of light are produced to initialize the media to a crystalline form, onto which data may be recorded. In accordance with another aspect of this invention, a spiral flash bulb with centrally located connectors comprises the flash illumination source for initializing the optical recording media.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: April 26, 2005
    Assignee: LSI Logic Corporation
    Inventors: John M. Guerra, Dmitri Vezenov