Patents by Inventor John R. Gilbert

John R. Gilbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9823252
    Abstract: A single disposable cartridge for performing a process on a particle, such as particle sorting, encapsulates all fluid contact surfaces in the cartridge for use with microfluidic particle processing technology. The cartridge interfaces with an operating system for effecting particle processing. The encapsulation of the fluid contact surfaces insures, improves or promotes operator isolation and/or product isolation. The cartridge may employ any suitable technique for processing particles.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: November 21, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Hugh Lewis, Derek Beaupre, Jaishree Trikha, Manish Deshpande
  • Patent number: 9814824
    Abstract: The example systems, apparatus and methods use a local perfusion extracorporeal circuit (LPEC) for perfusing a local target region of a body, with a systemic perfusion extracorporeal circuit (SPEC) coupled to the core region of the vasculature using a peripheral placed loop to the body, and a control procedure to cause the local target region of the body to be at a specified pattern of temperature values that are different than the temperature of the core of the body.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: November 14, 2017
    Assignee: Asia Pacific Medical Technology Development Company, Ltd
    Inventors: John R. Gilbert, Chih-Hsien Wang, Yih-Sharng Chen
  • Patent number: 9802767
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 31, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 9752976
    Abstract: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the microfluidic channels, and one or more detectors. The detectors, which may include light amplifying elements, detect each light signal and transducer the light signal into an electronic signal. The electronic signals, each representing the intensity of an optical signal, pass from each detector to an electronic data acquisition system for analysis. The light amplifying element or elements may comprise an array of phototubes, a multianode phototube, or a multichannel plate based image intensifier coupled to an array of photodiode detectors.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 5, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Edward Sinofsky, Manish Deshpande
  • Publication number: 20170209159
    Abstract: The present disclosure describes effector deployment systems and devices that can be coupled adjunctively to a shaft of a concentric cylinder system, to provide additional functionality during intravascular procedures.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventor: John R. Gilbert
  • Publication number: 20170128938
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Application
    Filed: April 17, 2015
    Publication date: May 11, 2017
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Publication number: 20170119948
    Abstract: The present disclosure describes for at least two zones of selective thermal therapy of the body. Three-port extracorporeal circuits are described that can be used to establish at least two zones of selective thermal therapy of the body. The example three-port extracorporeal circuit includes a branching section that provides for setting the temperature of blood injected into two different portions of the body at differing temperature levels, to provide at least two zones of selective thermal therapy.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Applicant: Asia Pacific Medical Technology Development Company, Ltd
    Inventor: John R. Gilbert
  • Publication number: 20170119950
    Abstract: The present disclosure describes flow stagnation control components that allow improved flow control in systems including injection members, while also limiting the creation of regions of little to no flow in the vasculature, resulting in low flow zones or dead zones. The flow stagnation control components can be formed as an imposed minimum conductance component or a controlled flow partitioning system.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Applicant: Asia Pacific Medical Technology Development Company, Ltd
    Inventor: John R. Gilbert
  • Publication number: 20170119260
    Abstract: The present disclosure describes quantification of the flow conductance in a region of the vasculature using a catheter member coupled to at least two pressure sensors. Data from measurements of the pressure at known, controlled patterns of flow rates at the catheter member can be used to compute values of the flow conductance for the regions of the vasculature.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Applicant: Asia Pacific Medical Technology Development Company, Ltd
    Inventor: John R. Gilbert
  • Publication number: 20170066605
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 9, 2017
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 9550215
    Abstract: A method and a system are provided for detecting particles moving through a detection region or regions for facilitating or processing a sample having one or more particles flowing through the detection region. The particle detection system may include an optically detectable pattern associated with a detection region. The optically detectable pattern may be configured to receive a particle optical signal and produce a patterned optical signal. The detection system may further include a detector configured to analyze the patterned optical signal to determine both a particle characteristic based on a property of the particle optical signal and a particle parameter based on a property of the optically detectable pattern.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: January 24, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: Manish Deshpande, John R. Gilbert
  • Publication number: 20160346452
    Abstract: The example systems, apparatus and methods use a local perfusion extracorporeal circuit (LPEC) for perfusing a local target region of a body, with a systemic perfusion extracorporeal circuit (SPEC) coupled to the core region of the vasculature using a peripheral placed loop to the body, and a control procedure to cause the local target region of the body to be at a specified pattern of temperature values that are different than the temperature of the core of the body.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 1, 2016
    Applicant: Asia Pacific Medical Technology Development Company, Ltd
    Inventors: John R. Gilbert, Chih-Hsien Wang, Yih-Sharng Chen
  • Publication number: 20160303564
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 9446912
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: September 20, 2016
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Publication number: 20160201129
    Abstract: The present invention generally relates to fluidic droplets, and to techniques for screening or sorting such fluidic droplets. In some embodiments, the fluidic droplets may contain cells such as immune cells, which can be analyzed to determine receptor sequences or other useful properties of the cells. For example, in one aspect, the present invention is generally related to determining immune cell receptors by encapsulating immune cells and target cells in microfluidic droplets, determining the effect of the immune cells on the target cells, and for those immune cells that kill or otherwise adversely affect the target cells, determining one or more receptor sequences of those immune cells. The target cells may be, for example, cancer cells or virally-infected cells. In some cases, the receptor sequences can be used, for example, to identify certain properties of the immune cells, to screen for drugs or other therapeutic agents, or the like.
    Type: Application
    Filed: August 22, 2014
    Publication date: July 14, 2016
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, John Heyman, John R. Gilbert
  • Publication number: 20160158758
    Abstract: An improved actuator for use in a microfluidic particle sorting system utilizes a staggered packing scheme for a plurality of actuators used to selectively deflect a particle in an associated sorting channel from a stream of channels. An actuator block may be provided for housing a two-dimensional array of actuators, each configured to align with an actuation port in an associated sorting chip containing a plurality of sorting channels. The actuator block may include a built-in stressing means to pre-stress each actuator housed by the block. An actuator comprising a piezo-electric stack may employ contact-based electrical connection rather than soldered wires to improve packing density. The actuator may be an external actuator. That is, the external actuator is external to the substrate in which the sorting channels are formed.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Inventors: Andrew Johnson, John R. Gilbert, Manish Deshpande, Hugh Lewis, Bernard Bunner
  • Patent number: 9339850
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises a bubble valve for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: May 17, 2016
    Assignee: CYTONOME/ST, LLC
    Inventors: Manish Deshpande, John R. Gilbert
  • Patent number: 9260693
    Abstract: An improved actuator for use in a microfluidic particle sorting system utilizes a staggered packing scheme for a plurality of actuators used to selectively deflect a particle in an associated sorting channel from a stream of channels. An actuator block may be provided for housing a two-dimensional array of actuators, each configured to align with an actuation port in an associated sorting chip containing a plurality of sorting channels. The actuator block may include a built-in stressing means to pre-stress each actuator housed by the block. An actuator comprising a piezo-electric stack may employ contact-based electrical connection rather than soldered wires to improve packing density. The actuator may be an external actuator. That is, the external actuator is external to the substrate in which the sorting channels are formed.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 16, 2016
    Assignee: CYTONOME/ST, LLC
    Inventors: Andrew Johnson, John R. Gilbert, Manish Deshpande, Hugh Lewis, Bernard Bunner
  • Publication number: 20150352597
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises a bubble valve for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Manish Deshpande, John R. Gilbert
  • Publication number: 20150352599
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises a bubble valve for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Manish Deshpande, John R. Gilbert