Patents by Inventor John S. Althaus

John S. Althaus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10443088
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that retain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: October 15, 2019
    Assignee: HandyLab, Inc.
    Inventors: Betty Wu, John S. Althaus, Nikhil Phadke, Sundaresh N. Brahmasandra, Kalyan Handique, Aaron Kehrer, Gene Parunak, Cecelia Haley, Ted Springer
  • Publication number: 20190284606
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that regain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Application
    Filed: February 22, 2019
    Publication date: September 19, 2019
    Inventors: Betty Wu, John S. Althaus, Sundaresh N. Brahmasandra, Kalyan Handique, Nikhil Phadke
  • Patent number: 10364456
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that retain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 30, 2019
    Assignee: HANDYLAB, INC.
    Inventors: Betty Wu, John S. Althaus, Nikhil Phadke, Sundaresh N. Brahmasandra, Kalyan Handique, Aaron Kehrer, Gene Parunak, Cecelia Haley, Ted Springer
  • Publication number: 20190144620
    Abstract: Disclosed herein is a substrate-independently surface-coated polymer by aromatic-amine compound and a coating method thereof, and in particular to a substrate-independently surface-coated polymer and a coating method thereof wherein an aromatic compound in which two or more amines are substituted on benzene, is substrate-independently surface-coated. The substrate-independently surface-coated polymer characterized in that the surface of a polymer substrate is coated in such a way to react, using a surface modifier, an aromatic compound of the following structural formula on at least one surface of the polymer substrate having a nucleophilic functional group or an electrophilic functional group.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Inventors: John S. Althaus, Kyong Hoon Lee, Gareth M. Fotouhi, Shinnosuke Inoue, Myoung-Han Kim
  • Patent number: 10214623
    Abstract: Disclosed herein is a substrate-independently surface-coated polymer by aromatic-amine compound and a coating method thereof, and in particular to a substrate-independently surface-coated polymer and a coating method thereof wherein an aromatic compound in which two or more amines are substituted on benzene, is substrate-independently surface-coated. The substrate-independently surface-coated polymer characterized in that the surface of a polymer substrate is coated in such a way to react, using a surface modifier, an aromatic compound of the following structural formula on at least one surface of the polymer substrate having a nucleophilic functional group or an electrophilic functional group.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 26, 2019
    Assignee: Core Biosystems Inc.
    Inventors: John S. Althaus, Kyong Hoon Lee, Gareth M. Fotouhi, Shinnosuke Inoue, Myoung-Han Kim
  • Publication number: 20170313837
    Abstract: Disclosed herein is a substrate-independently surface-coated polymer by aromatic-amine compound and a coating method thereof, and in particular to a substrate-independently surface-coated polymer and a coating method thereof wherein an aromatic compound in which two or more amines are substituted on benzene, is substrate-independently surface-coated. The substrate-independently surface-coated polymer characterized in that the surface of a polymer substrate is coated in such a way to react, using a surface modifier, an aromatic compound of the following structural formula on at least one surface of the polymer substrate having a nucleophilic functional group or an electrophilic functional group.
    Type: Application
    Filed: June 24, 2016
    Publication date: November 2, 2017
    Inventors: Kyong Hoon Lee, John S. Althaus, Gareth M. Gareth, Shinnosuke Inoue, Myoung-Han Kim
  • Publication number: 20150118684
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that retain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 30, 2015
    Inventors: Betty Wu, John S. Althaus, Nikhil Phadke, Sundaresh N. Brahmasandra, Kalyan Handique, Aaron Kehrer, Gene Parunak, Cecelia Haley, Ted Springer
  • Patent number: 8852862
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that retain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: October 7, 2014
    Assignee: HandyLab, Inc.
    Inventors: Betty Wu, John S. Althaus, Nikhil Phadke, Sundaresh N. Brahmasandra, Kalyan Handique, Aaron Kehrer, Gene Parunak, Cecelia Haley, Ted Springer
  • Publication number: 20140030798
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that regain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 30, 2014
    Applicant: HANDYLAB, INC.
    Inventors: Betty WU, John S. Althaus, Sundaresh N. Brahmasandra, Kalyan Handique, Nikhil Phadke
  • Patent number: 8470586
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that regain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: June 25, 2013
    Assignee: Handylab, Inc.
    Inventors: Betty Wu, John S. Althaus, Sundaresh N. Brahmasandra, Kalyan Handique, Nikhil Phadke
  • Patent number: 8105477
    Abstract: The present invention relates to an electrochemical method for detecting a target polynucleotide. An electrode comprising an electrode surface is provided. The electrode surface includes at least one probe molecule reversibly immobilized with respect to the electrode surface. A first electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The electrode surface is contacted with a liquid comprising the target polynucleotide. Upon the contacting step, at least some of the probe molecule immobilized with respect to the electrode surface dissociates therefrom. A second electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The presence of the target polynucleotide is determined at least partially on the basis of the first and second electrochemical signals.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: January 31, 2012
    Assignee: Handylab, Inc.
    Inventors: John S. Althaus, Lee Kyonghoon, Vijay Namasivayam, Sundaresh N. Brahmasandra, Kalyan Handique
  • Publication number: 20110039345
    Abstract: The present invention relates to an electrochemical method for detecting a target polynucleotide. An electrode comprising an electrode surface is provided. The electrode surface includes at least one probe molecule reversibly immobilized with respect to the electrode surface. A first electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The electrode surface is contacted with a liquid comprising the target polynucleotide. Upon the contacting step, at least some of the probe molecule immobilized with respect to the electrode surface dissociates therefrom. A second electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The presence of the target polynucleotide is determined at least partially on the basis of the first and second electrochemical signals.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 17, 2011
    Applicant: HandyLab, Inc.
    Inventors: John S. Althaus, Lee Kyonghoon, Vijay Namasivayam, Sundaresh N. Brahmasandra, Kalyan Handique
  • Patent number: 7820030
    Abstract: The present invention relates to an electrochemical method for detecting a target polynucleotide. An electrode comprising an electrode surface is provided. The electrode surface includes at least one probe molecule reversibly immobilized with respect to the electrode surface. A first electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The electrode surface is contacted with a liquid comprising the target polynucleotide. Upon the contacting step, at least some of the probe molecule immobilized with respect to the electrode surface dissociates therefrom. A second electrochemical signal indicative of an amount of probe molecule immobilized with respect to the electrode surface is obtained. The presence of the target polynucleotide is determined at least partially on the basis of the first and second electrochemical signals.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: October 26, 2010
    Assignee: HandyLab, Inc.
    Inventors: John S. Althaus, Lee Kyonghoon, Vijay Namasivayam, Sundaresh N. Brahmasandra, Kalyan Handique
  • Publication number: 20080268491
    Abstract: A method and apparatus for measuring the level of metal in a biological sample can employ a current measuring device. It preferably includes a display for displaying the level of metal, and preferably free metal, in the sample. It can use a test strip interfaced to a potentiostat. The test strip preferably includes layers that separate a part of the sample which contains the free metal. Electrodes enable measurement of free metal in the separated part of the sample.
    Type: Application
    Filed: February 19, 2008
    Publication date: October 30, 2008
    Applicant: PIPEX, INC.
    Inventors: Steve H. Kanzer, John S. Althaus
  • Publication number: 20080262213
    Abstract: Methods and systems for processing polynucleotides (e.g., DNA) are disclosed. A processing region includes one or more surfaces (e.g., particle surfaces) modified with ligands that regain polynucleotides under a first set of conditions (e.g., temperature and pH) and release the polynucleotides under a second set of conditions (e.g., higher temperature and/or more basic pH). The processing region can be used to, for example, concentrate polynucleotides of a sample and/or separate inhibitors of amplification reactions from the polynucleotides. Microfluidic devices with a processing region are disclosed.
    Type: Application
    Filed: May 3, 2005
    Publication date: October 23, 2008
    Inventors: Betty Wu, John S. Althaus, Sundaresh N. Brahmasandra, Kalyan Handique, Nikhil Phadke
  • Publication number: 20080206876
    Abstract: Instruments for the selective and direct detection of free metals in fluids and methods to diagnose metal-related diseases and determine pharmacologic dosing regimens are disclosed.
    Type: Application
    Filed: October 12, 2007
    Publication date: August 28, 2008
    Inventors: Steve H. Kanzer, John S. Althaus