Patents by Inventor John Spencer Morris

John Spencer Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11005058
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 11, 2021
    Assignee: SAMSUNG RESEARCH AMERICA, INC.
    Inventors: Zhaoqun Zhou, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Publication number: 20190312222
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 10, 2019
    Inventors: ZHAOQUN ZHOU, PETER T. KAZLAS, MEAD MISIC, ZORAN POPOVIC, JOHN SPENCER MORRIS
  • Patent number: 10333090
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 25, 2019
    Assignee: SAMSUNG RESEARCH AMERICA, INC.
    Inventors: Zhaoqun Zhou, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Patent number: 10056523
    Abstract: A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, fixing the layer comprising quantum dots formed over the substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably fixed in the absence or substantial absence of oxygen. Also disclosed is a method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, exposing the layer comprising quantum dots to small molecules and light flux.
    Type: Grant
    Filed: November 13, 2016
    Date of Patent: August 21, 2018
    Assignee: SAMSUNG RESEARCH AMERICA, INC.
    Inventors: Peter T. Kazlas, John Spencer Morris, Robert J. Nick, Zoran Popovic, Matthew Stevenson, Jonathan S. Steckel
  • Publication number: 20180013088
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 11, 2018
    Inventors: ZHAOQUN ZHOU, PETER T. KAZLAS, MEAD MISIC, ZORAN POPOVIC, JOHN SPENCER MORRIS
  • Patent number: 9793505
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Grant
    Filed: October 2, 2010
    Date of Patent: October 17, 2017
    Assignee: QD VISION, INC.
    Inventors: Zhaoqun Zhou, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Publication number: 20170125633
    Abstract: A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, fixing the layer comprising quantum dots formed over the substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably fixed in the absence or substantial absence of oxygen. Also disclosed is a method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, exposing the layer comprising quantum dots to small molecules and light flux.
    Type: Application
    Filed: November 13, 2016
    Publication date: May 4, 2017
    Inventors: PETER T. KAZLAS, JOHN SPENCER MORRIS, ROBERT J. NICK, ZORAN POPOVIC, MATTHEW STEVENSON, JONATHAN S. STECKEL
  • Patent number: 9496141
    Abstract: A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, fixing the layer comprising quantum dots formed over the substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. Also disclosed is a method of making a device, the method comprising forming a layer comprising quantum dots over a substrate including a first electrode, exposing the layer comprising quantum dots to small molecules and light flux. A method of making a film including a layer comprising quantum dots, and a method of preparing a device component including a layer comprising quantum dots are also disclosed. Devices, device components, and films are also disclosed.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 15, 2016
    Assignee: QD VISION, INC.
    Inventors: Peter T. Kazlas, John Spencer Morris, Robert J. Nick, Zoran Popovic, Matthew Stevenson, Jonathan S. Steckel
  • Publication number: 20130037778
    Abstract: A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode, fixing the layer comprising quantum dots formed over the substrate, and exposing at least a portion of, and preferably all, exposed surfaces of the fixed layer comprising quantum dots to small molecules. Also disclosed is a method of making a device, the method comprising forming a layer comprising quantum dots over a substrate including a first electrode, exposing the layer comprising quantum dots to small molecules and light flux. A method of making a film including a layer comprising quantum dots, and a method of preparing a device component including a layer comprising quantum dots are also disclosed. Devices, device components, and films are also disclosed.
    Type: Application
    Filed: May 10, 2012
    Publication date: February 14, 2013
    Inventors: PETER T. KAZLAS, John Spencer Morris, Robert J. Nick, Zoran Popovic, Matthew Stevenson, Jonathan S. Steckel
  • Publication number: 20110140075
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Application
    Filed: October 2, 2010
    Publication date: June 16, 2011
    Inventors: Zhaoqun ZHOU, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris