Patents by Inventor John T. Vandeberg

John T. Vandeberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090171011
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: November 14, 2008
    Publication date: July 2, 2009
    Applicant: DSM IP ASSETS B.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Patent number: 6661959
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 9, 2003
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20030147614
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: April 10, 2002
    Publication date: August 7, 2003
    Applicant: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20030147615
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: June 5, 2002
    Publication date: August 7, 2003
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20020181913
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: April 10, 2002
    Publication date: December 5, 2002
    Applicant: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20020168163
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: December 6, 2001
    Publication date: November 14, 2002
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20020064357
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: January 11, 2001
    Publication date: May 30, 2002
    Applicant: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20020037146
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: January 11, 2001
    Publication date: March 28, 2002
    Applicant: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Patent number: 6339666
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: January 15, 2002
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Publication number: 20010033725
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Application
    Filed: April 20, 2001
    Publication date: October 25, 2001
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Patent number: 6298189
    Abstract: Optical fiber coatings are disclosed having excellent ribbon stripping and adhesion behavior. The coatings are radiation-curable. The excellent stripping and adhesion behavior can be achieved by several means which include by use of additives, by use of radiation-curable oligomers having higher molecular weight, or by use of coatings having certain thermal properties. Combination of means can be employed. Stripping behavior can be measured by crack propagation and fiber friction measurements.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: October 2, 2001
    Assignee: DSM N.V.
    Inventors: David M. Szum, Chander P. Chawla, James R. Petisce, John T. Vandeberg, George Pasternack, Timothy E. Bishop, Paul E. Snowwhite, Edward P. Zahora, Stephen C. Lapin
  • Patent number: 6246824
    Abstract: The present invention relates to optical fiber coatings, inks and matrix material structures such as bundles or ribbons, and methods of curing the same, using low power electron beam radiation. The optical fiber substrate is not substantially degraded following exposure to the low power electron beam radiation during the curing process.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: June 12, 2001
    Assignee: DSM N.V.
    Inventors: John T. Vandeberg, Vadim V. Krongauz
  • Patent number: 6085010
    Abstract: Provided is a ribbon assembly having the functional capability of providing mid-span access without the use of additives, monomers or oligomers containing fluorine or silicone. The ribbon assembly is formulated from an oligomer which reduces the surface energy of the ink coating and/or the matrix material.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: July 4, 2000
    Assignee: DSM N.V.
    Inventors: Edward P. Zahora, Edward J. Murphy, David M. Szum, John T. Vandeberg, Gerry K. Noren, Eva Montgomery
  • Patent number: 5340653
    Abstract: A free-radical radiation curable composition comprising:a) at least one compound containing one to six vinyl ether groups; andb) at least one compound containing a urethane backbone with one to six maleate and/or fumarate end groups,wherein the ratio of vinyl ether groups to maleate and/or fumarate groups is in the range of about 1 to about 1:5.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: August 23, 1994
    Assignee: Stamicarbon B.V.
    Inventors: Gerry K. Noren, John J. Krajewski, Sami A. Shama, John M. Zimmerman, Danny C. Thompson, John T. Vandeberg
  • Patent number: 5334456
    Abstract: A free-radical radiation curable composition comprising:a) at least one compound containing from one to about six vinyl ether groups; andb) at least one compound containing a saturated backbone and at least one maleate or fumarate end group per molecule,wherein the ratio of vinyl ether groups to maleate or fumarate groups in the composition is in the range of about 5:1 to about 1:5.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: August 2, 1994
    Assignee: Stamicarbon B.V.
    Inventors: Gerry K. Noren, John J. Krajewski, Sami A. Shama, John M. Zimmerman, Danny C. Thompson, John T. Vandeberg
  • Patent number: 5334455
    Abstract: A free-radical radiation curable composition comprising:a) at least one compound containing from one to about six vinyl ether groups; andb) at least one product obtainable by the reaction of a half-ester of maleic and/or fumaric acid with an epoxy functionalized compound,wherein the ratio of vinyl ether groups to maleate and/or fumarate groups is in the range of about 5:1 to about 1:5.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: August 2, 1994
    Assignee: Stamicarbon B.V.
    Inventors: Gerry K. Noren, John J. Krajewski, Sami A. Shama, John M. Zimmerman, Danny C. Thompson, John T. Vandeberg
  • Patent number: 4717623
    Abstract: A method is disclosed for increasing the adhesion of a radiation-curable coating composition to a surface which comprises treating the surface with a fluorine-containing gas before application of the coating and curing the coating composition by exposure to radiation. The increased adhesion of radiation-curable pigmented coating compositions to treated magnetic recording structures, such as tapes and disks, is particularly contemplated.
    Type: Grant
    Filed: January 14, 1986
    Date of Patent: January 5, 1988
    Assignee: DeSoto, Inc.
    Inventors: Wallace H. Brown, Dennis G. Anderson, John T. Vandeberg
  • Patent number: 4654083
    Abstract: A concrete mix comprises a cementing agent and aggregate, the aggregate comprising vesiculated beads of cross-linked resin which beads contain an average of at least 2 thin-walled foraminous cells to provide communication between the vesicles within said bead and the exterior of said beads to allow water to move into and out of said beads. This reduces the density of the concrete and the beads hold water to help control the cure.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: March 31, 1987
    Assignee: DeSoto, Inc.
    Inventor: John T. Vandeberg