Patents by Inventor John Voegele

John Voegele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9993205
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response, a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: June 12, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott A. Meyer, Yanting Dong, Jeremy Maniak, Doug Birholz, John Voegele
  • Patent number: 9277885
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: March 8, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Publication number: 20150164421
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 18, 2015
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8954146
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Publication number: 20140221853
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 7, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8750992
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: June 10, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8271086
    Abstract: Approaches for adjusting the pacing energy delivered by a pacemaker are provided. Adjusting the pacing energy involves performing a plurality of capture threshold tests, each capture threshold test measuring a capture threshold of the heart. One or more measured captured thresholds are selected, including at least one capture threshold that is higher relative to other measured capture thresholds acquired by the plurality of capture threshold tests. The pacing energy is adjusted based on the one or more selected capture thresholds.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 18, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John Voegele, Clayton Foster, David W. Yost, Scott Meyer, Yanting Dong, Kevin J. Stalsberg, Derek D. Bohn, Eric K. Enrooth
  • Publication number: 20100256703
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response, a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Application
    Filed: June 17, 2010
    Publication date: October 7, 2010
    Inventors: Scott A. Meyer, Yanting Dong, Jeremy Maniak, Doug Birholz, John Voegele
  • Patent number: 7774064
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response; a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 10, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott A. Meyer, Yanting Dong, Jeremy Maniak, Doug Birholz, John Voegele
  • Publication number: 20070021793
    Abstract: Approaches for adjusting the pacing energy delivered by a pacemaker are provided. Adjusting the pacing energy involves performing a plurality of capture threshold tests, each capture threshold test measuring a capture threshold of the heart. One or more measured captured thresholds are selected, including at least one capture threshold that is higher relative to other measured capture thresholds acquired by the plurality of capture threshold tests. The pacing energy is adjusted based on the one or more selected capture thresholds.
    Type: Application
    Filed: July 19, 2005
    Publication date: January 25, 2007
    Inventors: John Voegele, Clayton Foster, David Yost, Scott Meyer, Yanting Dong, Kevin Stalsberg, Derek Bohn, Eric Enrooth
  • Publication number: 20060247695
    Abstract: Methods and systems for detecting noise in cardiac pacing response classification processes involve determining that a cardiac response classification is possibly erroneous if unexpected signal content is detected. The unexpected signal content may comprise signal peaks that have polarity opposite to the polarity of peaks used to determine the cardiac response to pacing. Fusion/noise management processes include pacing at a relatively high energy level until capture is detected after a fusion, indeterminate or possibly erroneous pacing response classification is made. The relatively high energy pacing pulses may be delivered until capture is detected or until a predetermined number of paces are delivered.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Kevin Stalsberg, Yanting Dong, Scott Meyer, John Voegele, Derek Bohn, Eric Enrooth, Clayton Foster, David Yost
  • Publication number: 20060195149
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Inventors: Donald Hopper, John Voegele, Jesse Hartley, Avram Scheiner
  • Publication number: 20050131477
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response; a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Inventors: Scott Meyer, Yanting Dong, Jeremy Maniak, Doug Birholz, John Voegele
  • Patent number: 6049735
    Abstract: A method and apparatus for cardiac stimulation for addressing vasovagal syncope incorporates a detection algorithm in which a precipitous rate drop from a pre-existing average intrinsic heart rate value to a lower rate limit is sensed and if the patient is awake and the intrinsic rate remains below the lower rate limit for a predetermined number of beats, the patient's heart is paced at a rate that is a programmed differential above the prior average intrinsic rate for a second programmed time interval, at the conclusion of which the pacing rate is gradually decreased to the average heart rate existing prior to the sudden rate drop or to the lower rate limit.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: April 11, 2000
    Assignee: Cardiac Pacemakers Inc.
    Inventors: Jesse W. Hartley, Wyatt Stahl, John Voegele