Patents by Inventor John W. Fisher, III

John W. Fisher, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10997329
    Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: May 4, 2021
    Assignees: Massachusetts Institute of Technology, Shell Oil Company
    Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericus Johannes Henricus Smit, Sergio Daniel Kapusta
  • Patent number: 10262428
    Abstract: A scanner system is configured for acquiring three dimensional image information of an object. The scanner includes a projector, a camera, a graphics processing device, and a processor. The projector projects one of several pre-defined patterns upon the object. The camera captures an image from the object, which is received by the processor. The processor approximates mutual information from the object and the pattern using the graphics processing device, and selects a second pattern for projecting on the object.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: April 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Guy Rosman, Daniela Rus, John W. Fisher, III
  • Publication number: 20180293746
    Abstract: A scanner system is configured for acquiring three dimensional image information of an object. The scanner includes a projector, a camera, a graphics processing device, and a processor. The projector projects one of several pre-defined patterns upon the object. The camera captures an image from the object, which is received by the processor. The processor approximates mutual information from the object and the pattern using the graphics processing device, and selects a second pattern for projecting on the object.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 11, 2018
    Inventors: Guy Rosman, Daniela Rus, John W. Fisher, III
  • Publication number: 20170220718
    Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericks Johannes Smit, Sergio Daniel Kapusta
  • Patent number: 9665791
    Abstract: In one embodiment, a method of identifying the dominant orientations of a scene comprises representing a scene as a plurality of directional vectors. The scene may comprise a three-dimensional representation of a scene, and the plurality of directional vectors may comprise a plurality of surface normals. The method further comprises determining, based on the plurality of directional vectors, a plurality of orientations describing the scene. The determined plurality of orientations explains the directionality of the plurality of directional vectors. In certain embodiments, the plurality of orientations may have independent axes of rotation. The plurality of orientations may be determined by representing the plurality of directional vectors as lying on a mathematical representation of a sphere, and inferring the parameters of a statistical model to adapt the plurality of orientations to explain the positioning of the plurality of directional vectors lying on the mathematical representation of the sphere.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 30, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Julian Straub, Guy Rosman, Oren Freifeld, John J. Leonard, John W. Fisher, III
  • Publication number: 20150286893
    Abstract: In one embodiment, a method of identifying the dominant orientations of a scene comprises representing a scene as a plurality of directional vectors. The scene may comprise a three-dimensional representation of a scene, and the plurality of directional vectors may comprise a plurality of surface normals. The method further comprises determining, based on the plurality of directional vectors, a plurality of orientations describing the scene. The determined plurality of orientations explains the directionality of the plurality of directional vectors. In certain embodiments, the plurality of orientations may have independent axes of rotation. The plurality of orientations may be determined by representing the plurality of directional vectors as lying on a mathematical representation of a sphere, and inferring the parameters of a statistical model to adapt the plurality of orientations to explain the positioning of the plurality of directional vectors lying on the mathematical representation of the sphere.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 8, 2015
    Inventors: Julian Straub, Guy Rosman, Oren Freifeld, John J. Leonard, John W. Fisher, III