Patents by Inventor Jonathan David Pesansky

Jonathan David Pesansky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9850170
    Abstract: The disclosure provides for a mixture suitable for extrusion and firing to form a ceramic honeycomb substrate, said mixture comprising a batch composition selected from the group consisting of a cordierite batch composition and an aluminum titanate batch composition, an optional pore former material; a binder material and water; wherein said binder is a methyl ether of cellulose binder having a count of less than 300 water-insoluble fibers per gram of binder material.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 26, 2017
    Assignee: Corning Incorporated
    Inventors: Jun Hou, Susan Clair Lauderdale, Jonathan David Pesansky
  • Patent number: 9801297
    Abstract: Disclosed are device display screen protectors comprising a first strengthened substrate sized to cover a display screen of an electronic device, the first strengthened substrate having a central tension value in the range greater than 0 MPa and less than 20 MPa, a surface having a Knoop lateral cracking scratch threshold of at least 3 N.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: October 24, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Joshua Michael Jacobs, Jonathan David Pesansky, Kevin Barry Reiman, Ananthanarayanan Subramanian
  • Patent number: 9783452
    Abstract: Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: October 10, 2017
    Assignee: Corning Incorporated
    Inventors: Jonathan David Pesansky, Chandan Kumar Saha, Trevor E Wilantewicz
  • Patent number: 9676663
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 13, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20170150628
    Abstract: Disclosed are device display screen protectors comprising a first strengthened substrate sized to cover a display screen of an electronic device, the first strengthened substrate having a central tension value in the range greater than 0 MPa and less than 20 MPa, a surface having a Knoop lateral cracking scratch threshold of at least 3 N.
    Type: Application
    Filed: November 16, 2016
    Publication date: May 25, 2017
    Inventors: Jaymin Amin, Joshua Michael Jacobs, Jonathan David Pesansky, Kevin Barry Reiman, Ananthanarayanan Subramanian
  • Publication number: 20170129803
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of layer DOL of about 130 ?m up to about 175 ?m or, alternatively, to a depth of compression (DOC) in a range from about 90 ?m to about 120 ?m within the article. The compressive layer has a stress profile that includes a first substantially linear portion extending from a relatively shallow depth to the DOL or DOC and a second portion extending from the surface to the shallow depth. The second portion is substantially linear at a depth from 0 ?m to 5 ?m and has a steeper slope than that of the first portion of the profile. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Pascale Oram, Jonathan David Pesansky, Kevin Barry Reiman, Rostilav Vatchev Roussev, Vitor Marino Schneider, Brian Paul Strines
  • Patent number: 9567254
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of layer DOL of about 130 ?m up to about 175 ?m or, alternatively, to a depth of compression (DOC) in a range from about 90 ?m to about 120 ?m within the article. The compressive layer has a stress profile that includes a first substantially linear portion extending from a relatively shallow depth to the DOL or DOC and a second portion extending from the surface to the shallow depth. The second portion is substantially linear at a depth from 0 ?m to 5 ?m and has a steeper slope than that of the first portion of the profile. Methods of achieving such stress profiles are also described.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: February 14, 2017
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Pascale Oram, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Brian Paul Strines
  • Publication number: 20170036952
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20170036953
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Patent number: 9517968
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: December 13, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Patent number: 9487434
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 8, 2016
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20160264452
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: May 18, 2016
    Publication date: September 15, 2016
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20160257605
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: May 18, 2016
    Publication date: September 8, 2016
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20160122239
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of compression DOC of at least about 125 ?m within the glass article. The compressive stress profile includes a single linear segment or portion extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile may include an additional portion extending from the surface to a relatively shallow depth and the linear portion extending from the shallow depth to the depth of compression.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20160083298
    Abstract: The disclosure provides for a mixture suitable for extrusion and firing to form a ceramic honeycomb substrate, said mixture comprising a batch composition selected from the group consisting of a cordierite batch composition and an aluminum titanate batch composition, an optional pore former material; a binder material and water; wherein said binder is a methyl ether of cellulose binder having a count of less than 300 water-insoluble fibers per gram of binder material.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Jun Hou, Susan Clair Lauderdale, Jonathan David Pesansky
  • Patent number: 9227878
    Abstract: The disclosure provides for a mixture suitable for extrusion and firing to form a ceramic honeycomb substrate, said mixture comprising a batch composition selected from the group consisting of a cordierite batch composition and an aluminum titanate batch composition, an optional pore former material; a binder material and water; wherein said binder is a methyl ether of cellulose binder having a count of less than 300 water-insoluble fibers per gram of binder material.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: January 5, 2016
    Assignee: Corning Incorporated
    Inventors: Jun Hou, Susan Clair Lauderdale, Jonathan David Pesansky
  • Publication number: 20150368153
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 24, 2015
    Inventors: Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev
  • Publication number: 20150259244
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of layer DOL of about 130 ?m up to about 175 ?m or, alternatively, to a depth of compression (DOC) in a range from about 90 ?m to about 120 ?m within the article. The compressive layer has a stress profile that includes a first substantially linear portion extending from a relatively shallow depth to the DOL or DOC and a second portion extending from the surface to the shallow depth. The second portion is substantially linear at a depth from 0 ?m to 5 ?m and has a steeper slope than that of the first portion of the profile. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: May 28, 2015
    Publication date: September 17, 2015
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Pascale Oram, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Brian Paul Strines
  • Publication number: 20150239775
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: October 31, 2014
    Publication date: August 27, 2015
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines
  • Publication number: 20150239776
    Abstract: Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 ?m within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
    Type: Application
    Filed: October 31, 2014
    Publication date: August 27, 2015
    Inventors: Jaymin Amin, Benedict Osobomen Egboiyi, Jonathan David Pesansky, Kevin Barry Reiman, Rostislav Vatchev Roussev, Brian Paul Strines