Patents by Inventor Jonathan L. Schuchardt

Jonathan L. Schuchardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6875830
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 5, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6875879
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and an organometallic complex that incorporates a Group 3 to 10 transition metal and at least one chelating, dianionic triquinane ligand. The cis,syn,cis-triquinane framework is generated in three high-yield steps from inexpensive starting materials, and with heat and light as the only reagents. By modifying substituents on the triquinane ligand, polyolefin makers can control catalyst activity, comonomer incorporation, and polymer properties.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: April 5, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6864210
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a bimetallic complex that incorporates two Group 3 to 10 transition metal atoms, which may be the same or different, and a neutral or anionic indigoid ligand. By proper selection of the indigoid skeleton and by modifying its substituents and transition metal centers, polyolefin makers can fine-tune the bimetallic complexes to control activity, enhance comonomer incorporation, and optimize polymer properties.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 8, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Publication number: 20040157730
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a bimetallic complex that incorporates two Group 3 to 10 transition metal atoms, which may be the same or different, and a neutral or anionic indigoid ligand. By proper selection of the indigoid skeleton and by modifying its substituents and transition metal centers, polyolefin makers can fine-tune the bimetallic complexes to control activity, enhance comonomer incorporation, and optimize polymer properties.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 12, 2004
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 6774078
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system includes an organometallic complex that incorporates a Group 3 to 10 transition metal and an annulated cyclopentadienyl ligand that is pi-bonded to the metal. A one-pot method for making organometallic complexes from fulvene precursors is also disclosed. Additionally, the invention includes bimetallic complexes from cyclopentazulenyl compounds and a one-pot method for making them. Molecular modeling studies reveal that organometallic complexes incorporating such annulated cyclopentadienyl ligands, when combined with an activator such as MAO, should actively polymerize olefins.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: August 10, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Jonathan L. Schuchardt
  • Publication number: 20040077808
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and an organometallic complex that incorporates a Group 3 to 10 transition metal and at least one chelating, dianionic triquinane ligand. The cis,syn,cis-triquinane framework is generated in three high-yield steps from inexpensive starting materials, and with heat and light as the only reagents. By modifying substituents on the triquinane ligand, polyolefin makers can control catalyst activity, comonomer incorporation, and polymer properties.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 22, 2004
    Applicant: EQUISTAR CHEMICALS, LP
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6713576
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system includes an organometallic complex that incorporates a Group 3 to 10 transition metal and an anionic, polycyclic, convex ligand. Molecular modeling results indicate that the complexes, when combined with an activator, should actively polymerize olefins. The convex ligand uniquely stabilizes the active site while simultaneously minimizing steric interference. Calculations predict that complexes based on ligands with a high curvature index will have favorable reactivities with olefin monomers compared with similar complexes that incorporate Cp-like ligands.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: March 30, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Jonathan L. Schuchardt
  • Patent number: 6693154
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. It comprises an activator and an organometallic complex. The complex includes a Group 3-10 transition or lanthanide metal and a 1,3-bis(arylimino)isoindoline or 1,3-bis(heteroarylimino)isoindoline ligand. Activities of the Group 8-10 catalyst systems rival or exceed those of late transition metal bis(imines). The resulting polyolefins typically have high molecular weights, broad molecular weight distributions, and a high degree of crystallinity, which makes them valuable for film applications.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: February 17, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Jia-Chu Liu, Jonathan L. Schuchardt
  • Patent number: 6693157
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and an organometallic complex that incorporates a Group 3 to 10 transition metal and at least one chelating, dianionic triquinane ligand. The cis,syn,cis-triquinane framework is generated in three high-yield steps from inexpensive starting materials, and with heat and light as the only reagents. By modifying substituents on the triquinane ligand, polyolefin makers can control catalyst activity, comonomer incorporation, and polymer properties.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: February 17, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Publication number: 20030191253
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and an organometallic complex that incorporates a Group 3 to 10 transition metal and at least one chelating, dianionic triquinane ligand. The cis,syn,cis-triquinane framework is generated in three high-yield steps from inexpensive starting materials, and with heat and light as the only reagents. By modifying substituents on the triquinane ligand, polyolefin makers can control catalyst activity, comonomer incorporation, and polymer properties.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 9, 2003
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6544918
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a complex that incorporates a Group 3 to 10 transition metal and at least one chelating dianionic bis(allyl) or bis(benzyl) ligand. The ligands are often easy to make, and they are readily incorporated into transition metal complexes. By modifying the structure of the dianionic ligand, polyolefin makers can control comonomer incorporation, catalyst activity, and polymer properties.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: April 8, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Karen L. Neal-Hawkins, Jonathan L. Schuchardt
  • Publication number: 20030065113
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. It comprises an activator and an organometallic complex. The complex includes a Group 3-10 transition or lanthanide metal and a 1,3-bis(arylimino)isoindoline or 1,3-bis(heteroarylimino)isoindoline ligand. Activities of the Group 8-10 catalyst systems rival or exceed those of late transition metal bis(imines). The resulting polyolefins typically have high molecular weights, broad molecular weight distributions, and a high degree of crystallinity, which makes them valuable for film applications.
    Type: Application
    Filed: September 6, 2001
    Publication date: April 3, 2003
    Inventors: Jia-Chu Liu, Jonathan L. Schuchardt
  • Publication number: 20030055276
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a complex that incorporates a Group 3 to 10 transition metal and at least one chelating dianionic bis(allyl) or bis(benzyl) ligand. The ligands are often easy to make, and they are readily incorporated into transition metal complexes. By modifying the structure of the dianionic ligand, polyolefin makers can control comonomer incorporation, catalyst activity, and polymer properties.
    Type: Application
    Filed: July 17, 2001
    Publication date: March 20, 2003
    Inventors: Sandor Nagy, Karen L. Neal-Hawkins, Jonathan L. Schuchardt
  • Publication number: 20030013823
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Application
    Filed: June 6, 2001
    Publication date: January 16, 2003
    Inventor: Jonathan L. Schuchardt
  • Publication number: 20030008987
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Application
    Filed: June 20, 2002
    Publication date: January 9, 2003
    Applicant: EQUISTAR CHEMICALS, L.P.
    Inventor: Jonathan L. Schuchardt
  • Patent number: 6495485
    Abstract: Single-site catalysts useful for polymerizing olefins are disclosed. The organometallic catalysts incorporate a Group 3 to 10 transition, lanthanide or actinide metal and a caged diimide ligand. The diimide ligands are made by a tandem Diels-Alder and photochemical [2+2] cycloaddition sequence to give a multicyclic dione, followed by condensation with a primary amine. Because a wide variety of caged diimide ligands are easy to prepare from commercially available dienes and dienophiles, the invention enables the preparation of a new family of single-site catalysts. Based on their unique structure and geometry, the catalysts offer polyolefin producers new ways to improve activity, control comonomer incorporation, or regulate polyolefin tacticity.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: December 17, 2002
    Assignee: Equistar Chemicals, LP
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 6489414
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: December 3, 2002
    Assignee: Equistar Chemicals, LP
    Inventor: Jonathan L. Schuchardt
  • Publication number: 20020115561
    Abstract: Single-site catalysts useful for polymerizing olefins are disclosed. The organometallic catalysts incorporate a Group 3 to 10 transition, lanthanide or actinide metal and a caged diimide ligand. The diimide ligands are made by a tandem Diels-Alder and photochemical [2+2] cycloaddition sequence to give a multicyclic dione, followed by condensation with a primary amine. Because a wide variety of caged diimide ligands are easy to prepare from commercially available dienes and dienophiles, the invention enables the preparation of a new family of single-site catalysts. Based on their unique structure and geometry, the catalysts offer polyolefin producers new ways to improve activity, control comonomer incorporation, or regulate polyolefin tacticity.
    Type: Application
    Filed: April 8, 2002
    Publication date: August 22, 2002
    Applicant: EQUISTAR CHEMICALS, L.P.
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 6414099
    Abstract: Single-site catalysts useful for polymerizing olefins are disclosed. The organometallic catalysts incorporate a Group 3 to 10 transition, lanthanide or actinide metal and a caged diimide ligand. The diimide ligands are made by a tandem Diels-Alder and photochemical [2+2] cycloaddition sequence to give a multicyclic dione, followed by condensation with a primary amine. Because a wide variety of caged diimide ligands are easy to prepare from commercially available dienes and dienophiles, the invention enables the preparation of a new family of single-site catalysts. Based on their unique structure and geometry, the catalysts offer polyolefin producers new ways to improve activity, control comonomer incorporation, or regulate polyolefin tacticity.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: July 2, 2002
    Assignee: Equistar Chemicals, LP
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 5010047
    Abstract: A process for recovering double metal cyanide complex catalyst from a polymer such as polypropylene glycol in a form suitable for use as a polymerization catalyst is described. The process comprises the steps of (a) combining the polymer with a non-polar solvent to precipitate the catalyst and (b) filtering the resulting mixture in the presence of a filter aid to separate the polymer from the precipitated catalyst. In contrast to the prior art methods of catalyst removal, the process of the invention yields polymer uniformly low in color as well as recovered catalyst which may be reused in subsequent polymerizations.
    Type: Grant
    Filed: February 27, 1989
    Date of Patent: April 23, 1991
    Assignee: Arco Chemical Technology, Inc.
    Inventor: Jonathan L. Schuchardt