Patents by Inventor Jonathan S. Steckel

Jonathan S. Steckel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230018406
    Abstract: Light emitting structures and methods of fabrication are described. In an embodiment, LED coupons are transferred to a carrier substrate and then patterned to LED mesa structures. Patterning may be performed on heterogeneous groups of LED coupons with a common mask set. The LED mesa structure are then transferred in bulk to a display substrate. In an embodiment, a light emitting structure includes an arrangement of LEDs with different thickness, and corresponding bottom contacts with different thicknesses bonded to a display substrate.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 19, 2023
    Inventors: Dmitry S. Sizov, Ion Bita, Jean-Jacques P. Drolet, John T. Leonard, Jonathan S. Steckel, Nathaniel T. Lawrence, Xiaobin Xin, Ranojoy Bose
  • Patent number: 11404400
    Abstract: Light emitting structures and methods of fabrication are described. In an embodiment, LED coupons are transferred to a carrier substrate and then patterned to LED mesa structures. Patterning may be performed on heterogeneous groups of LED coupons with a common mask set. The LED mesa structure are then transferred in bulk to a display substrate. In an embodiment, a light emitting structure includes an arrangement of LEDs with different thickness, and corresponding bottom contacts with different thicknesses bonded to a display substrate.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: August 2, 2022
    Assignee: Apple Inc.
    Inventors: Dmitry S. Sizov, Ion Bita, Jean-Jacques P. Drolet, John T. Leonard, Jonathan S. Steckel, Nathaniel T. Lawrence, Xiaobin Xin, Ranojoy Bose
  • Patent number: 11217567
    Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: January 4, 2022
    Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
  • Publication number: 20200343230
    Abstract: Light emitting structures and methods of fabrication are described. In an embodiment, LED coupons are transferred to a carrier substrate and then patterned to LED mesa structures. Patterning may be performed on heterogeneous groups of LED coupons with a common mask set. The LED mesa structure are then transferred in bulk to a display substrate. In an embodiment, a light emitting structure includes an arrangement of LEDs with different thickness, and corresponding bottom contacts with different thicknesses bonded to a display substrate.
    Type: Application
    Filed: January 22, 2019
    Publication date: October 29, 2020
    Inventors: Dmitry S. Sizov, Ion Bita, Jean-Jacques P. Drolet, John T. Leonard, Jonathan S. Steckel, Nathaniel T. Lawrence, Xiaobin Xin, Ranojoy Bose
  • Publication number: 20200312824
    Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
    Type: Application
    Filed: April 28, 2020
    Publication date: October 1, 2020
    Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
  • Patent number: 10770619
    Abstract: Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes a first electrode including an anode opposite a second electrode including a cathode, a hole injection layer adjacent the first electrode, a hole transporting layer disposed on the hole injection layer, and an emissive layer of inorganic semiconductor nanocrystals disposed between the hole transporting layer and the second electrode. The inorganic semiconductor nanocrystals comprising a plurality of semiconductor nanocrystals capable of emitting light upon excitation.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: September 8, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seth Coe-Sullivan, Marshall Cox, Caroline J. Roush, Jonathan S. Steckel
  • Patent number: 10748969
    Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode or may be formed from other pixel structures such as liquid crystal display pixel structures. The pixels may emit light such as red, green, and blue light. An angle-of-view adjustment layer may overlap the array of pixels. During operation, light from the pixels passes through the angle-of-view adjustment layer to a user. The viewing angle for the user is enhanced as the angular spread of the emitted light from the pixels is enhanced by the angle-of-view adjustment layer. The angle-of-view adjustment layer may be formed from holographic structures recorded by applying laser beams to a photosensitive layer or may be formed from a metasurface that is created by patterning nanostructures on the display using printing, photolithography, or other patterning techniques.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: August 18, 2020
    Assignee: Apple Inc.
    Inventors: Jean-Jacques P. Drolet, Jonathan S. Steckel
  • Patent number: 10700236
    Abstract: Quantum dot layers and display devices including quantum dot layers are described. In an embodiment the quantum dot layer includes quantum dots with coatings to adjust the spacing between adjacent quantum dots. In an embodiment, the coatings are metal oxide coatings and may create a charge transporting matrix. In an embodiment, the coatings are core-material coatings. The QD layers may be QD-LED compatible.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Jonathan S. Steckel, Hitoshi Yamamoto, Paul S. Drzaic
  • Patent number: 10685940
    Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: June 16, 2020
    Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
  • Patent number: 10633582
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 28, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Craig Breen, John R. Linton, Jonathan S. Steckel, Marshall Cox, Seth Coe-Sullivan, Mark Comerford
  • Patent number: 10591774
    Abstract: A display may have display layers that form an array of pixels. The display layers may include a first layer that includes a light-blocking matrix and a second layer that overlaps the first layer. The first layer may include quantum dot elements formed in openings in the light-blocking matrix. The light-blocking matrix may be formed from a reflective material such as metal. The second layer may include color filter elements that overlap corresponding quantum dot elements in the first layer. Substrate layers may be used to support the first and second layers and to support thin-film transistor circuitry that is used in controlling light transmission through the array of pixels. The display layers may include a liquid crystal layer, polarizer layers, filter layers for reflecting red and green light and/or other light to enhance light recycling, and layers with angularly dependent transmission characteristics.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 17, 2020
    Assignee: Apple Inc.
    Inventors: Jean-Jacques P. Drolet, Yuan Chen, Jonathan S. Steckel, Ion Bita, Dmitry S. Sizov, Chia Hsuan Tai, John T. Leonard, Lai Wang, Ove Lyngnes, Xiaobin Xin, Zhibing Ge
  • Patent number: 10461131
    Abstract: Displays including hybrid pixels including an OLED subpixel and QD-LED subpixel are described. In an embodiment, OLED and QD-LED stacks are integrated into the same pixel with multiple common layers shared by the OLED and QD-LED stacks.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 29, 2019
    Assignee: Apple Inc.
    Inventors: Jonathan S. Steckel, Mathew K. Mathai, Paul S. Drzaic, Hitoshi Yamamoto
  • Publication number: 20190296264
    Abstract: Display panel narrow band emission pixels and methods of fabrication are described. In an embodiment, such a pixel arrangement includes a pair of reflective electrodes, a pair of narrow band emission layers, and a pair of hole transport layers of different thickness over the pair of reflective electrodes and narrow band emission layers. A semi-transparent or transparent top electrode layer is located over the first and second hole transport layers.
    Type: Application
    Filed: December 11, 2018
    Publication date: September 26, 2019
    Inventors: Mathew Mathai, Jonathan S. Steckel, Hitoshi Yamamoto
  • Publication number: 20190280153
    Abstract: Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes a first electrode including an anode opposite a second electrode including a cathode, a hole injection layer adjacent the first electrode, a hole transporting layer disposed on the hole injection layer, and an emissive layer of inorganic semiconductor nanocrystals disposed between the hole transporting layer and the second electrode. The inorganic semiconductor nanocrystals comprising a plurality of semiconductor nanocrystals capable of emitting light upon excitation.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 12, 2019
    Inventors: SETH COE-SULLIVAN, MARSHALL COX, CAROLINE J. ROUSH, JONATHAN S. STECKEL
  • Patent number: 10393940
    Abstract: A composition useful for altering the wavelength of visible or invisible light is disclosed. The composition comprising a solid host material and quantum confined semiconductor nanoparticles, wherein the nanoparticles are included in the composition in amount in the range from about 0.001 to about 15 weight percent based on the weight of the host material. The composition can further include scatterers. An optical component including a waveguide component and quantum confined semiconductor nanoparticles is also disclosed. A device including an optical component is disclosed. A system including an optical component including a waveguide component and quantum confined semiconductor nanoparticles and a light source optically coupled to the waveguide component is also disclosed. A decal, kit, ink composition, and method are also disclosed. A TFEL including quantum confined semiconductor nanoparticles on a surface thereof is also disclosed.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: August 27, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seth Coe-Sullivan, John R. Linton, Craig Breen, Jonathan S. Steckel, Mark Comerford
  • Publication number: 20190237444
    Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
  • Patent number: 10297581
    Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: May 21, 2019
    Assignee: Apple Inc.
    Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
  • Patent number: 10297713
    Abstract: Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes a first electrode including an anode opposite a second electrode including a cathode, a hole injection layer adjacent the first electrode, a hole transporting layer disposed on the hole injection layer, and an emissive layer of inorganic semiconductor nanocrystals disposed between the hole transporting layer and the second electrode. The inorganic semiconductor nanocrystals comprising a plurality of semiconductor nanocrystals capable of emitting light upon excitation.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 21, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seth Coe-Sullivan, Marshall Cox, Caroline J. Roush, Jonathan S. Steckel
  • Publication number: 20190131356
    Abstract: Displays including hybrid pixels including an OLED subpixel and QD-LED subpixel are described. In an embodiment, OLED and QD-LED stacks are integrated into the same pixel with multiple common layers shared by the OLED and QD-LED stacks.
    Type: Application
    Filed: December 13, 2018
    Publication date: May 2, 2019
    Inventors: Jonathan S. Steckel, Mathew K. Mathai, Paul S. Drzaic, Hitoshi Yamamoto
  • Patent number: 10225906
    Abstract: A light emitting device includes a semiconductor nanocrystal in a layer. The layer can be a monolayer of semiconductor nanocrystals. The monolayer can form a pattern on a substrate.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: March 5, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Seth Coe-Sullivan, Jonathan S. Steckel, LeeAnn Kim, Moungi G. Bawendi, Vladimir Bulovic