Patents by Inventor Jordan J. Hopkins

Jordan J. Hopkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240107768
    Abstract: Electronic devices (e.g., semiconductor devices, which may be configured for 3D NAND memory devices), comprise pillars extending through a stack of alternating conductive tiers and insulative tiers. The conductive tiers, which may include control gates for access lines (e.g., word lines), include conductive rails along an outer sidewall of the conductive tiers, distal from the pillars extending through the conductive tiers. The conductive rails protrude laterally beyond outer sidewalls of the insulative tiers. The conductive rails increase the amount of conductive material that may otherwise be in the conductive tiers, which may enable the conductive material to exhibit a lower electrical resistance, improving operational performance of the electronic devices.
    Type: Application
    Filed: November 7, 2023
    Publication date: March 28, 2024
    Inventors: John D. Hopkins, Rita J. Klein, Jordan D. Greenlee
  • Publication number: 20230330812
    Abstract: Systems and methods for providing real-time modification of cutting process programs using feedback from one or more sensors which measure one or more operational parameters of a cutting process and/or cutting apparatus. The sensor readings may be used to provide real-time modification of a motion program after such motion program has been provided to a motion controller. Examples of such operational parameters may include waterjet pump supply pressure, the abrasive mass flow rate, the force of the waterjet on the target piece, etc. The systems and methods discussed herein also utilize a cutting algorithm or program to calculate actual cut quality based on one or more sensor inputs, and to generate warnings or system shut-downs accordingly. The systems and methods discussed herein also utilize inspection devices to inspect coupons or first articles, and use the inspection data to autonomously modify motion programs and/or cutting process models without user intervention.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Glenn A. Erichsen, Alex M. Chillman, Jordan J. Hopkins, Adam G. Law, Amanda C. Kotchon, Paul H. Tacheron, Charles D. Burnham, Brian Kent, Mohamed Hashish, Craig D. Sunada, Jiannan Zhou
  • Patent number: 11724361
    Abstract: Systems and methods for providing real-time modification of cutting process programs using feedback from one or more sensors which measure one or more operational parameters of a cutting process and/or cutting apparatus. The sensor readings may be used to provide real-time modification of a motion program after such motion program has been provided to a motion controller. Examples of such operational parameters may include waterjet pump supply pressure, the abrasive mass flow rate, the force of the waterjet on the target piece, etc. The systems and methods discussed herein also utilize a cutting algorithm or program to calculate actual cut quality based on one or more sensor inputs, and to generate warnings or system shut-downs accordingly. The systems and methods discussed herein also utilize inspection devices to inspect coupons or first articles, and use the inspection data to autonomously modify motion programs and/or cutting process models without user intervention.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 15, 2023
    Assignee: Flow International Corporation
    Inventors: Glenn A. Erichsen, Alex M. Chillman, Jordan J. Hopkins, Adam G. Law, Amanda C. Kotchon, Paul H. Tacheron, Charles D. Burnham, Brian Kent, Mohamed Hashish, Craig D. Sunada, Jiannan Zhou
  • Publication number: 20220349476
    Abstract: A seal assembly includes a seal body and an energizer. The seal assembly is dimensioned to lessen the chance of certain failure modes, such as back jetting of pressurized fluid that gets behind the energizer during a pressurization operation. A ratio of a lateral distance of the seal body to an axial length of the energizer is between 0.400 and 1.7087. A ratio of the lateral distance to an inner radius of the seal body is between 0.10 and 0.401. A ratio of a web thickness of the seal body to the inner radius is between 0.068 and 0.0881. A ratio of the difference between a radial height of the energizer and a groove height of the seal body to the radial height is between 0.050 and 0.155. A ratio of the difference between the radial height and the groove height to the inner radius is between 0.015 and 0.3486.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 3, 2022
    Inventors: Jordan J. Hopkins, Ethan E. Romanoff, Thomas W. Sizemore, Mark F. Huntley
  • Publication number: 20210379729
    Abstract: Systems and methods for providing real-time modification of cutting process programs using feedback from one or more sensors which measure one or more operational parameters of a cutting process and/or cutting apparatus. The sensor readings may be used to provide real-time modification of a motion program after such motion program has been provided to a motion controller. Examples of such operational parameters may include waterjet pump supply pressure, the abrasive mass flow rate, the force of the waterjet on the target piece, etc. The systems and methods discussed herein also utilize a cutting algorithm or program to calculate actual cut quality based on one or more sensor inputs, and to generate warnings or system shut-downs accordingly. The systems and methods discussed herein also utilize inspection devices to inspect coupons or first articles, and use the inspection data to autonomously modify motion programs and/or cutting process models without user intervention.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 9, 2021
    Inventors: Glenn A. Erichsen, Alex M. Chillman, Jordan J. Hopkins, Adam G. Law, Amanda C. Kotchon, Paul H. Tacheron, Charles D. Burnham, Brian Kent, Mohamed Hashish, Craig D. Sunada, Jiannan Zhou
  • Patent number: 10436190
    Abstract: A relief valve assembly is provided for use in connection with high pressure and ultrahigh pressure pumps. The relief valve assembly includes a valve pin having an engagement portion with a tapered surface and a valve seat having a valve pin receiving aperture defining a tapered surface on the valve seat to sealingly mate with the engagement portion of the valve pin when the valve pin is seated against the valve seat in a seated configuration. The valve seat further includes at least one bypass passage that extends from the valve pin receiving aperture to an exterior surface of the valve seat such that when the valve pin is displaced away from the seated configuration fluid can pass through the bypass passage and an annular space created between the engagement portion of the valve pin and the valve seat. Systems incorporating the relief valve assembly are also provided.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: October 8, 2019
    Assignee: Flow International Corporation
    Inventor: Jordan J. Hopkins
  • Publication number: 20190184523
    Abstract: Reinforced diamond nozzles and methods of making the same for fluid jet cutting applications are provided. An example method includes forming or providing a tubular diamond body having a jet passage extending therethrough and establishing a protective casing around the tubular diamond body so that an entirety or substantially an entirety of an outer circumferential surface area of the tubular diamond body is directly contacted and reinforced by the protective casing. Establishing the protective casing around the tubular diamond body may include thermal spraying, casting, direct metal laser sintering, or other fabrication techniques.
    Type: Application
    Filed: November 14, 2018
    Publication date: June 20, 2019
    Inventors: Mohamed Hashish, Jordan J. Hopkins
  • Publication number: 20180320682
    Abstract: A relief valve assembly is provided for use in connection with high pressure and ultrahigh pressure pumps. The relief valve assembly includes a valve pin having an engagement portion with a tapered surface and a valve seat having a valve pin receiving aperture defining a tapered surface on the valve seat to sealingly mate with the engagement portion of the valve pin when the valve pin is seated against the valve seat in a seated configuration. The valve seat further includes at least one bypass passage that extends from the valve pin receiving aperture to an exterior surface of the valve seat such that when the valve pin is displaced away from the seated configuration fluid can pass through the bypass passage and an annular space created between the engagement portion of the valve pin and the valve seat. Systems incorporating the relief valve assembly are also provided.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventor: Jordan J. Hopkins
  • Patent number: 10054118
    Abstract: A relief valve assembly is provided for use in connection with high pressure and ultrahigh pressure pumps. The relief valve assembly includes a valve pin having an engagement portion with a tapered surface and a valve seat having a valve pin receiving aperture defining a tapered surface on the valve seat to sealingly mate with the engagement portion of the valve pin when the valve pin is seated against the valve seat in a seated configuration. The valve seat further includes at least one bypass passage that extends from the valve pin receiving aperture to an exterior surface of the valve seat such that when the valve pin is displaced away from the seated configuration fluid can pass through the bypass passage and an annular space created between the engagement portion of the valve pin and the valve seat. Systems incorporating the relief valve assembly are also provided.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: August 21, 2018
    Assignee: Flow International Corporation
    Inventor: Jordan J. Hopkins
  • Publication number: 20150004036
    Abstract: A relief valve assembly is provided for use in connection with high pressure and ultrahigh pressure pumps. The relief valve assembly includes a valve pin having an engagement portion with a tapered surface and a valve seat having a valve pin receiving aperture defining a tapered surface on the valve seat to sealingly mate with the engagement portion of the valve pin when the valve pin is seated against the valve seat in a seated configuration. The valve seat further includes at least one bypass passage that extends from the valve pin receiving aperture to an exterior surface of the valve seat such that when the valve pin is displaced away from the seated configuration fluid can pass through the bypass passage and an annular space created between the engagement portion of the valve pin and the valve seat. Systems incorporating the relief valve assembly are also provided.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 1, 2015
    Inventor: Jordan J. Hopkins
  • Patent number: 7568424
    Abstract: A seal carrier is provided for an ultrahigh-pressure fluid system having a plunger configured to reciprocate therein along a longitudinal axis when the ultra-high pressure fluid system is in operation, the seal carrier having an inner surface provided with a first portion configured to captively receive a seal, substantially preventing displacement of the seal in a direction substantially parallel to the longitudinal axis, and a second portion configured to circumferentially surround a bearing. The seal carrier is further provided with an outer surface having a recess formed along at least a portion of a circumference thereof, the recess at least partially positioned opposite the first portion of the inner surface along a lateral axis substantially perpendicular to the longitudinal axis.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: August 4, 2009
    Assignee: Flow International Corporation
    Inventors: Jordan J. Hopkins, Adrian Hawes
  • Patent number: 7247006
    Abstract: An ultrahigh-pressure fluid system, such as an ultrahigh-pressure fluid pump, includes an improved dynamic seal assembly that can withstand pressures above 40,000 psi, and more preferably, pressures up to and beyond 87,000 psi. The dynamic sealing assembly includes a plastic seal having a bore through which the plunger reciprocates, and a bearing positioned adjacent the seal, also having a bore through which the plunger reciprocates. A seal carrier surrounds the circumference of the bearing and is subjected to a compressive force that is sufficiently high to circumferentially collapse the seal carrier in a radial direction against the bearing. This collapse of the seal carrier against the bearing causes an inner surface of the bore through the bearing to achieve substantially uniform contact with an outer surface of the plunger when the assembly is subjected to ultrahigh-pressure, thereby eliminating gaps that occur in prior art systems.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: July 24, 2007
    Assignee: Flow International Corporation
    Inventors: Jordan J. Hopkins, Adrian Hawes, William L. Old
  • Publication number: 20030197377
    Abstract: An ultrahigh-pressure fluid system, such as an ultrahigh-pressure fluid pump, includes an improved dynamic seal assembly that can withstand pressures above 40,000 psi, and more preferably, pressures up to and beyond 87,000 psi. The dynamic sealing assembly includes a plastic seal having a bore through which the plunger reciprocates, and a bearing positioned adjacent the seal, also having a bore through which the plunger reciprocates. A seal carrier surrounds the circumference of the bearing and is subjected to a compressive force that is sufficiently high to circumferentially collapse the seal carrier in a radial direction against the bearing. This collapse of the seal carrier against the bearing causes an inner surface of the bore through the bearing to achieve substantially uniform contact with an outer surface of the plunger when the assembly is subjected to ultrahigh-pressure, thereby eliminating gaps that occur in prior art systems.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 23, 2003
    Applicant: Flow International Corporation
    Inventors: Jordan J. Hopkins, Adrian Hawes, William L. Old
  • Publication number: 20030122376
    Abstract: Components, assemblies and methods for creating seals in ultrahigh pressure fluid containment systems, are shown and described. Embodiments of the invention allow abutting components of like materials to be compressed against each other without the need of an intermediate gasket or other structure, and reduce relative movement between the abutting parts to increase the useful life of the components. Embodiments of the invention incorporate a first component with a tapered mouth having a curved cross-sectional profile, and a complementary component having a mouth with a linear cross-sectional profile. The profiles contact each other at a tangential contact angle ranging between 40 and 68 degrees with respect to the radial axis of the components.
    Type: Application
    Filed: January 2, 2002
    Publication date: July 3, 2003
    Applicant: Flow International Corporation
    Inventors: Jordan J. Hopkins, Olivier L. Tremoulet, Larry G. Pearson
  • Patent number: 6361416
    Abstract: This invention relates to methods and apparatus for recovering abrasive for use with abrasive jet cutting systems. In one embodiment, an apparatus in accordance with the invention includes an abrasive-laden fluid handling device coupled to a catcher tank of an abrasive jet cutting system, a pre-classifier fluidly coupled to the abrasive-laden fluid handling device, a hydro-classifier fluidly coupled to the pre-classifier, a fine-particle separation tank fluidly coupled to a clarified-fluid flow outlet of the hydro-classifier, a wet abrasive receptacle positioned to receive a wet recovered abrasive discharged from the hydro-classifier, a de-watering device engageable with the wet recovered abrasive in wet abrasive receptacle, and a dryer unit. The abrasive-laden fluid handling device may include an abrasive-laden fluid conduit having a first end in fluid communication with the catcher tank and an abrasive-laden fluid outlet.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: March 26, 2002
    Assignee: Flow International Corporation
    Inventors: Jordan J. Hopkins, Jonathan M. Stewart, Felice M. Sciulli, Katherine Zaring, Daniel Chin, John Massenburg, Daniel Devine
  • Patent number: 6328638
    Abstract: An improved apparatus and methods for recovering abrasive from an abrasive-laden fluid are shown and described. An abrasive-laden fluid handling device is coupled to a catcher tank to collect abrasive-laden fluid and transport it to a hydro-classifier. Wet recovered abrasive is discharged from the hydro-classifier and transferred to a de-watering device. The de-watering device removes water from the abrasive by decanting fluid and via use of an air eduction system. De-watered abrasive is then ejected from the de-watering device to a dryer unit, to be further dried and processed for reuse.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: December 11, 2001
    Assignee: Flow International Corporation
    Inventors: Jordan J. Hopkins, Jonathan M. Stewart, Felice M. Sciulli, Katherine Zaring, Daniel Chin, John Massenburg, Daniel Devine
  • Patent number: D561877
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: February 12, 2008
    Assignee: Flow International Corporation
    Inventors: Jordan J. Hopkins, Adrian Hawes
  • Patent number: D999885
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: September 26, 2023
    Assignee: Shape Technologies Group, Inc.
    Inventors: Mark F. Huntley, Jordan J. Hopkins, Ethan E. Romanoff, Thomas W. Sizemore